スキップしてメイン コンテンツに移動

ライフログ

FemtoCubeを移動時に鞄に放り込み、移動時間の間ずっと記録してみたものを、GoogleDocsのグラフ作成機能でトレンドとして表示してみた。
上から、バッテリ、カラーセンサのRGB値(12bit)、SCP1000の温度と気圧の順となっている。3秒間隔でだいたい1時間半程度のスパンを持つ。
シリアルSDロガーの消費電力分が加わっているので、本来の運用ではもっと緩やかに電圧降下するだろう。今のままでも一日は持ちこたえそう。
カラーセンサは今回WayPointの記録用に使った。ピークは乗り込んだ駅と降りた駅で鞄から取り出して明かりに当てた様子を表す。
温度はだいたい鞄の中の温度となる。 最後は外に出し、部屋に置いたのでだんだん低下していく。 
気圧は高度を表す。途中地下を経由するので、その高度変化が高くなる方へ現れている。

これに加速度とか加えると楽しそうだ。そしてディテールを増やしすぎて生活が駄々漏れに・・・ 
記録をこうしたグラフにするだけでなく、一日のログから消灯時間が勝手に決まるスマート住宅とか(やや迷惑だが)、蓄積したデータから何か現実や行動者自身にフィードバックがかかるものも面白いだろう。生活リズムから健康診断するとかそういう用途は、今あるスマートフォンとかでも十分できそうではある。ライフターゲティング広告ビジネスとかとか。人がアフィリエイトを稼ぐために運動し外出する時代はもう来ていたのだ・・・(完)

**********
オムロンのPC連携できる歩数計
上を書いた後で、新古品として見つけた歩数計。
最近の歩数計は加速度センサで歩行リズムの周期だけを取り出してカウントするらしい。
オムロンの製品はRFIDによる非接触データ通信に対応していて、一日ごとのデータを会員制サイトにアップロードできる。同じ仕組み(WirelessLink)に対応した体重計と血圧計もあるようだ。

ライフログに重点を置いたヘルスケア製品はどんどん増えていくだろう。 通信端末もNFCやBT4LE規格などによってより柔軟な機器連携をするようになりつつあるので、体重計や血圧計の管理画面がスマートフォンアプリ、という形態は容易に想像できる。

ライフログの悪用の危険性についてはどうなのだろう。
歩数も体重も心拍も、日付以外にGPSの位置座標のような絶対基準を持っていないので、個人と紐付けなければデータ単体の悪用は難しそうだ。 

 実際のところ、高齢の親にらくらくホンを持たせて、その歩数計とメール報告機能で安否と体調をモニターするといった用途では積極的に活用されている。 
テクノロジーベースで考えると良く間違えるけれど、魅力的な技術が普及するのではなく、ニーズが技術に魅力を持たせる。TwitterやPachubeみたいな空間で刻々と情報を自ら駄々漏れにしても、無視されるか価値を持つかは、発信者や情報が注目されているかどうかによる。
 直接的な脅威は、何時の時代も関門の突破であり、古典的なソーシャルエンジニアリングによるものだ。 携帯端末が盗む側にとっても魅力的な端末になってしまっている。

**********

用事であっちこっち行き来していたら1万歩を超えていた。開けた場所が必要なGPSと違い、歩行ベースのログはとても単純かつ実用的だと改めて思った。
ライフログも測るという行為により自分や他者の行動にフィードバックをかける手段であって、目的ではない・・・ と機器作りとしては自戒を込めて。 



Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察してみると、プログラマ・USBCDCとしてATSAMD21が搭載されている(中央の四角いQFNパッケージ)MCU的にはnEDBG

【サボテン】太陽電池の結線

 久しぶりにサボテン計画。 忙しかったり投薬治療直前でだるかったりして、かなり放置していた。 さぼてんも不機嫌そうだ。 せっかくなので、園芸用の水受けに移す。  関節痛で寝込んでる間に、エイプリルフール終わってましたね^^・・・。  太陽電池の展開機構を想像したが、まずは太陽電池の結線を済ませよう。  配線を綺麗にまとめたくていろいろ探していたら、千石電商でぴったりなものを見つけた。 LEDリング基板 というらしい http://www.led-paradise.com/product/629?  本来はチップLEDをリング状にまとめる代物。 イレギュラーな使い道だ。   今度は小径のを買って、GX200のリングライトに仕立て上げよう。   嬉しいことにフレーム径にジャストフィット。 配線を綺麗にまとめられた。   太陽電池の接続部。逆流防止用にショットキーダイオードを入れている。 かなりスッキリ。 蛍光灯下 500ルクスでの実験。 EDLCは10Fを使用。  ちゃんと充電が行われている。 といっても、とてもとてもゆっくりとだけれど・・・。

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch ・内蔵VREF電圧が5種類と多い(0.55V,1.1V,1.5V.2.5V.4.3V

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア