スキップしてメイン コンテンツに移動

ストラップ模擬衛星 (5x5x5cm)


「人工衛星」というハードの規模は幅広いスペクトルがあり、その規模は無線付きワイヤレスセンサと呼べるものから、遠隔操作の重機までくらいの差がある。

CubeSatは間違いなく前者の領域に入る。それもアマチュア無線技術に基づく、CWなどの人間向きの信号をやり取りする。

ということで、この無線でのやり取りに焦点を当てた模擬衛星キットを作ってみた。できるだけ簡素化したので、電源部含めて5x5x5cmに収まる。

実はCubeSatにも5x5x5cmサイズの計画がちらほらあるようだ。
海外では10センチ角以下で100g以下の衛星はFemtoSatと呼ばれている。

(フェムト: 10のマイナス15乗)

重さでの分類によると、
Mini 10kg~100kg
Nano 1kg~10kg
Pico 100g~1000g
Femto ~100g

(ちなみに、CubeSat規格での0.5Uは10x10x5cm)
宇宙では大きさで発電電力が決まってしまうので、小さいということは積めるものにもいろいろと制限が大きい。




概要
主要部品
FMトランスミッター (新潟精密 NS73M)
ATmega328P 8MHz外部水晶/Arduino用ブートローダー
LM60   温度センサ

検証中
S9706       カラーセンサ(レンズはジャンクの組み込み用WebCamから)
MMA7361 加速度センサ
LTC3105  低電圧MPPC動作DCDCコンバーター
LTC4071  低電圧起動Li-Po/ionチャージャー
太陽電池 SC-3722-9
Li-Poセル 100mAh
スーパーキャパシタ(5V/1.5F~)

基板 UP-204GSR 二枚組のユニバーサル基板
10mmジュラコンスタッド
塩ビのキューブケース(50mm四方) ハンズにて発見。ぴったり。


通信系

この回路の目玉ははNS73M FMステレオトランスミッタ。カーステレオにDAPの音楽を飛ばすためによく使われるもの。

XBeeのようにモジュール同士での遮蔽された通信ではなく、普通のFMラジオを使って直接受信できる。

本当はCWを出してみたいけど、ここでは簡単さを優先してFM(WFM)に絞った。
まだ受信系すら積んでないので、赤外線入力くらいは付けたい。

微弱無線に適合するためアッテネーターを外部に追加している関係で、あまり距離は出せない。それでも実際の衛星が使う電波通信の感覚を模擬できる。

モジュール自体はワイドFMで飛ばしているのだが、無線機のFMモードで聞くと、帯域制限がかかるためそれっぽい音が聞こえる。(飛距離も伸びる)

トランスミッタにAVRで生成したモールスとAFSKパケットを音声入力する。ステレオ入力なのでちょうど1chずつ割り当てている。OPアンプでミキサを作れば、他の音源ソースを入力するなんてこともできる。 音声合成ICや、マイクロホン、音楽プレーヤーのライン出力などなど・・・。

衛星のフォーマットに限らず、センサデータで自由な音が出すことができる。ワイヤレスセンサーシンセと呼んだほうがいいだろう。

信号生成には、Arduino向けのMorseライブラリとSoftModemライブラリを使わせてもらっている。(Bell202規格の復変調ICが入手しづらい今日この頃)



ありあわせの部品で簡単に作れるのだが、まだ問題が山積み。
・電源管理
 FMトランスミッタが起動した時点で、回路の消費電流は3.3V、40mAとなる。ピーク132mWの収支をとるのが結構難しい。
テレメトリ送信頻度は数十秒に一度へ減らし、平均消費電力を発電量以下に持っていく必要がある。 
大容量EDLCでの初期充電時間の壁をなんとかしたい。

・太陽電池の選定
おあつらえ向きの太陽電池があまり無いという罠がある。PowerFilmの最小サイズでも縦幅がオーバーする。 動かすときは、素直に外部にパドルを広げたほうがいいだろう。

衛星は超絶技術の塊ではなく、枯れた技術の故障回避設計の塊。そう。プロトタイピングの先には長い長い検証が待っているのです。

関係ないけど、ニトリのバナナハンガーはヘッドホン吊るせたりして色々と便利ですね。

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察...

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア...

CANトランシーバーを使わずにCAN通信をする

 CANバスの物理層は差動通信で、RS485の様にマルチドロップ接続が可能。  自動車におけるノイズ環境でも通信が成立するように、トランシーバICには様々な対策が施されている。  一方で、基板にマイコンを複数載せて、例えばブロードキャストメッセージを含んだ通信をさせたいとなったとき、ハードウェアとしてデータリンク層にあたるコントローラが実装されていて、メッセージフィルタ等が可能なCANバスは魅力的だ。しかし、長くても1m未満の配線長で差動ドライバのバスを駆動するのは電力的なペナルティが大きい。 CANバスの構成  トランシーバーには5Vレベルと3.3Vレベルの製品があり、車載以外だと省電力化のために3.3Vバスを採用する例があるらしい。(電圧が低いほうがドミナント時の電流は下がるので)製品によってはフォールトトレラントのための様々な機能が付加されている。    トランシーバーをつかわず、UARTの様に単純に接続することもできる。過去にはこのようなアプリケーションノートがあった。 On-Board Communication via CAN without Transceiver https://www.mikrocontroller.net/attachment/28831/siemens_AP2921.pdf CANコントローラの入出力を1線式マルチドロップバスとしてつなぐことで、トランシーバーが無くても通信が可能になる。規格外の使い方ではあるけれど、大幅に単純、かつ省電力になる。 コントローラのみでの接続 R4 MinimaにはCANコントローラーが内蔵されているため、上記アプリケーションノートの様に接続してみた。ダイオード2個と数kΩのプルアップ抵抗だけでサンプルコードの通信ができた。 https://docs.arduino.cc/tutorials/uno-r4-minima/can  とりあえず1Mbpsでも通信できていたけれど、Lowレベルの電位が下がり切っていないので、OD出力のバッファをTXに挟むとよいかもしれない。  R4 Minimaのコントローラのみで通信させている様子(250kbps) https://github.com/sandeepmistry/arduino-CAN/blob/master/API.md ライブラリの実装は以下で確認...

UNO R4 Minimaの仕様を眺める

CANバス内蔵Classicボードたち。 しかし割高になってしまった… Uno R4 Minimaを入手したので遊びつつ、どのような実装になっているのか、仕様を眺めてみた。 UNOは現在のArduino製品の中ではClassic Familyというカテゴリに入っており、歴史的なフォームファクタを継承している。ルネサス製MCUの採用で話題だけれど、5V単電源動作可能なARMマイコンとしては高機能だ。 要点としては、初学者向けのClassicファミリにCortex-M4が降りてきて、内蔵RTC、DAC出力、CANバスといった機能にもAPIレベルで対応しているという点になる。  スペックだけ見ると、反射的に3.3Vで動いてほしいとかいろいろ要望が湧いてくるが、ターゲットはあくまで初心者なのを忘れないようにする。 (いい感じの互換ボードに期待) ボードとピンマップを眺める 公式サイトのボード紹介ページでは、回路図と基板図をAltium365ビューワーで見ることができるようになっていた。回路図で抵抗を選択すると詳細が表示されるし、基板図上の実装と連携して位置をハイライトできたりする。 Minimaの実際の基板には16MHzの水晶は空きパターンとなっている。内蔵オシレーターで動いているようだ。 Minima 回路図 https://docs.arduino.cc/resources/schematics/ABX00080-schematics.pdf Wifi R4回路図 https://docs.arduino.cc/resources/schematics/ABX00087-schematics.pdf MinimaとWifi R4ではソケットに引き出されたSPIバスのマッピングが異なっている。これに伴いCANで使うピンも位置が変わっている。APIが用意されてるのにピンマップ表で表記していないのはボード依存のためかもしれない。 CANを使いたければシールド設計で対処するしかなさそう。  他にも、Minimaのソケットの3.3V出力は、Minimaのデータシートに書いてある通りMCUの内部電圧を生成しているLDOの出力を引き出している。そこまでやるのかというくらい割り切っている。  内部レギュレータから引き出せる電流量はArduinoとしては表向き載っていないけれど、ルネサス...