スキップしてメイン コンテンツに移動

投稿

ラベル(computer)が付いた投稿を表示しています

電源管理モジュールの製作

2021年が始まった。去年も仕事はあったけれど、納品先に実際に出向いたのは一度だけだった。 日常がじわじわ侵食されていく中、今年はどうなることだろう。   そういう状況下では、実験装置の構成を、どこでも誰でもできるようにしておくという作業がたくさん出てくる。 最小限の装置でPC単体での遠隔開発が行えるような手段。似たようなものはお仕事でもワンオフで何度か作ってきて、今までも役立ってくれている。ということで昨年は仕事の合間に組み込み部品としての試作をいろいろ行っていた。  実際のところ、単体ではマイコン付きFETとシャントモニタでしかない。最近遊んでいるTinyAVR-0をMCUとして載せている。 機能としては以下のとおり。 ・電源ONOFF制御 ・INA226による0.5mA単位 ~4A程度までの電流測定、アラート通知 ・電圧(スイッチ前後)の測定  セルフチェック機能 ・コマンドサーボのようなデイジーチェーン接続 ・拡張性 端面スルーホール加工にしてみた。他の基板への実装も簡単。 USB端子がついた基板は、TinyAVR-0つきFT234Xが載ったUSBシリアル変換器。UPDIプログラマ化できる 試作例1  試験コントローラ 試験用冷蔵庫に入れて、庫内で電源制御や温度監視をさせてみた。 温度センサにはLMT01を複数繋ぎ、庫内や測定対象に取り付ける。 制御例。MegunoLink上でプロットと電源制御を行った例。 試作例2 試作OBC基板の電源制御、モード管理、状態監視 開発中にOBCの電流値を参照したり、電源制御段階ごとの異常検知や、ブートモード切替などをソフトウェア上から行える。実装と冗長性の検討が長引いて回路図段階で何回もやり直したおかげか、試作一号機はとりあえず元気に稼働し始めた。   たいていのシステムには複数の機能別ボードや異機種コントローラが内包されているものだけど、それらの動作を最適化しながら、HILS的なシステムを作りあげるのは結構大変。  個人的に、まずはベースバンド部、アプリケーションプロセッサ、ストレージみたいなまとまりを作りこむために、共通化配線とI/F基板1つでPCにつないで開発できることを目標としている。(電力規模100mW~1W以下)

Raspberry Pi High Quality Cameraを試す

https://www.raspberrypi.org/products/raspberry-pi-high-quality-camera/  ソニー製の1/2.3型 12Mピクセルのセンサモジュール(High Quality Camera)がPi Cameraのラインナップに加わった。    個人的に手持ちの産業用ズームレンズを評価するのにちょうどよさそうなので入手してみた。 背景としてはCマウントレンズがガラクタ箱の中でなぜか増殖しており、我に返ってみれば、Cマウントレンズ沼の中に膝まで浸かっているのだった。  1/2.3型といえばハイエンドスマートフォンでもおなじみのフォーマットだけれど、フルサイズ比で倍率は約5.6倍となる。同じ画を撮るための焦点距離が短くて済む利点がある。OlympusのTGシリーズや、Nikonの超望遠コンデジなど尖った製品も多い。  カメラとして、このクラスのセンサでレンズ遊びをするなら、中古市場でPentax Qシリーズを手に入れて、各種マウントアダプタを漁るほうが満足度は高いかもしれない。   センサ基板はしっかりした金属製マウントに取り付けられている。三脚穴もついておりテストしやすい。バックフォーカス調節リングが取り付けられており、Cマウントレンズ毎にバラついている無限遠点を微調整して合わせることができる。単焦点レンズでは不要なこともあるけれど、特にズーム機構を持つレンズではフォーカスリングの表示と一致させる調整が必須となり、マウントだけでもかなりの価値がある。 バックフォーカス調節リングは、マウント上のマイナスネジを緩めて、すこしテンションが無いと動き始めないので注意。  IRカットフィルタもついているが、これはユーザーが取り外すこともできるようになっている。ただし外すと保証は受けられないようだ。  基板とマウントは低粘着シートを介して封止してあり、光と埃等の侵入を防いでいる。 基板とマウントのネジはシリコーンスペーサだけで固定されているため、レンズの荷重を基板側のネジ穴で支える構造はやめたほうがよい。 カメラシステムの作成  個人的には屋外のRaspi地上局に接続して、星空を連続撮影する全天撮影カメラにしてみたいが、...

屋外受信局の設備更新

 屋外にRaspberrypi2を設置してから、もう4年が経過していた。そんなに負荷をかけてないからか、SSHで定期的にメンテしていたけどSDカード不良になることもなくSDR鯖として動いてくれた。  いままでの屋外BOXは入れ物の選択、構造、気象対策については問題なかったといえるけれど、小さくてコネクタも増設できず、ちょこっと試したい装置を取り付けるにしても取り回しが悪かった。なので今回は箱を大型化し、不満点の解消に努めた。 設置性やコネクタ回りのハンドリングを改善 イーサネットHUBを設置 外部装置への電源分配機能 余ったスペースにボードコンピュータを設置 ボックス回り AC100Vラインは屋外用の防水延長ケーブルをそのまま箱に導くので、延長コードの先が防水容器になった形。  コンセント部はキャップ構造になっており、やや小さい外形でボックスに穴加工すれば、押し込むことで容易には引っこ抜けない構造になる。  内部のACタップの配線を固定したあとで、ボックスとコンセント部の隙間はシリコンコーキングで充填する。 タカチのBOXは内部のベースプレートも一緒に購入して、ここに穴をあけてタイラップで様々な部品を固定することにする。  内部の部品、ケーブルの設置基準は、簡単にベースプレートを取り外せること。(防水性にかかわる部品を除く) 縦置きとなるので、ケーブルは直下から取り出す。  下部のどこかにベントホールを設けておく。 完全密閉状態だとプラケースということもあり、一度侵入した湿気が逃げられず、気温変化の激しい日に内部が結露して故障する。  穴の場所は重力で水が抜けるような位置かつ、暴風雨で雨水が逆流しないような構造が良い。 ベースプレートの裏側などはおすすめ。設置場所によっては虫などの侵入を許すこともあり気を遣う。 足は屋外用マグネットベースにしたので、仮置きでもある程度固定できるようになった。  電源回り  ACアダプタまでは既製品の組み合わせで固めた。内部は短い延長コードと、USB電源付きの小型コンセントタップを設置。  限られた容積を有効活用できるような配置にする。  コンセントタッ...

UMPCもどきの製作3 構造のくみ上げ

UMPCもどきの2つ目の制作記事 からまた半年が過ぎた。  その間に、RaspberyPi4が国内入手できるようになっていた。が、電力設計などでまだ扱いづらいところがある。アイドル状態で結構温かくなるサードパーティーのヒートシンクを触っていると、専用のPMICが無いRaspiの弱点が目立ってきたように感じる。  今回はBT接続の小型キーボードのデッドストック品の入手をきっかけとして、唐突にWaveShareのHDMI接続5.5インチOLEDモジュール(Raspi3用)のフレームを作成した。  その流れを生かし、ハンドヘルド端末として骨組み構造をプロトタイプしてみた。 始まり  中古で手に入れたキーボードはエレコムのTK-GMFBP029BKという製品。 日本語46キー配列。2012年にiPhone向けの英語配列モデルと同時に展開され、手持ちでライトなチャット入力用途とされていたもの。電源は単四電池x2なので経年劣化は無い。  これが5.5インチOLEDディスプレイと横幅がぴったりだったので、フレームをつくってハンドヘルド端末を組み立ててみることにした。 5.5インチ HDMI液晶について  手持ちの5.5インチディスプレイはHDMI接続、かつタッチ部はUSBなので接続対象を選ばないが、基板に直に組み付けられるのはRaspi3系統だけとなる。今確認すると、   Raspi4にも対応し、ケース付きになっている後発品も併売されている。 3Bと4Bを買えばすぐわかるけれど、両者はHDMI端子もだが、LANとUSBコネクタの配置まで異なっており、3B用のHDMI液晶キットは4Bではそのままだと使えないので、購入時には注意だ。 https://www.waveshare.com/product/displays/lcd-oled/lcd-oled-1/5.5inch-hdmi-amoled-with-case.htm 拡散されるとは思ってなかった写真  フレーム側面にキーボードについていた展開式カバーを模擬した固定ヒンジを設けた。 フラットなキーボード端末を目指していたので、特に折り畳み機構は設けなかった。 バ...

Atom x5 タブレット

Coreiを積んだノートPCは重たく、冷却ファンの音が意外と大きい。ということで最近は型落ちのAtom x5なタブレットPCを携行している。  中古で手に入れた富士通のQ507/MEは、10型でフルHD、デジタイザと軽量キーボードがついていて、フルサイズのUSBが2ポートついている。  電源キャップ破損固体なので無効だけれど、一応防水、防塵の機種だ。  1代古いQ506/MEのカスタムモデルは一時期大量に出回っていたので有名だ。Q507と506を比べると、ただのマイナーチェンジかと思いきや、底部のアクセサリポートを除いてUSBポートの配置などが全く違って興味深い。 Atom x5-Z85XXを搭載したタブレットや2in1はたくさん出回っているけれど、どのメーカーの製品であっても長期間のスリープ後などに起動すらしなくなる不具合を抱えているようだ。  バッテリを切り離し、電源を完全に落とさないとこのループから抜けられないため、機種によっては対処法が無いものがある。  この機種はハードリセットスイッチがあるため、復旧は簡単に行えるが、初めて直面したときはヒヤヒヤした。  軽量でファンレス。文章を書くにはとても良い。  ストレージサイズが64GBしかないけど、回路図CADとVisualStudio Code、IDEを少々入れて、Dropboxのスマート同期を有効化する程度ならそんなに問題にならない。  Live USBを走らせる  Linux環境という点では、WSLを動かすのはAtom x5レベルだと結構厳しい。VM運用もあまりしたくないので、Raspberry pi Desktopを Live USBのまま使ってみることにした。  ハードウェアとしては、USBメモリを優先的に起動するようBIOSで設定するだけだ。  フル規格のUSBポートが2つあるので、つけっぱなしでも支障がなく使いやすい。  Live USBだと、Atom x5タブレットでもオーディオを除けばほとんどの機能がそのまま使える。  なお、SSDを消去してクリーンインストールする道を選ぶと、ドライバや画面設定回りで修羅の道が待っている...

UMPCもどきの製作2( 5.5inch AMOLEDディスプレイ)

前の記事 からだいぶ時間が経ってしまった。 時間は常にDIYに味方する。画面の検討を再開すると、WAVESHAREからいくつか新しいディスプレイが登場していた。 https://www.waveshare.com/product/5.5inch-hdmi-amoled.htm この5.5inch AMOLEDディスプレイをAliexpress経由で購入してみたので、筐体の設計のために仕様を確認してみる。  新型は従来と比べ、タッチスクリーンが静電容量式になり、USB接続になって汎用的な利用が可能になっていた。 従来と比べて操作性や画面品質は圧倒的に良くなっている。 付属品はRaspberryPi固定用のスペーサ、Raspi用HDMI,USB端子、そして短いHDMIケーブルとmicroUSBケーブル。  汎用的なマシンにつなぐ場合でも困ることはなさそうだ。 有機ELパネルなので、画面焼けを防ぐためにスクリーンセーバー設定やディスプレイ点灯時間の制限などを忘れないようにしよう。 Raspberry pi3を搭載する このモニタはmodel Bの基板に合わせてHDMIコネクタやUSBコネクタのアダプタが用意されている。以前のモデルと違って裏返に固定するのでGPIOは丸ごとアクセス可能だ。  注意点としては、拡張基板を固定しようとして、なべ小ねじの代わりにスペーサを立てようとすると、真下のスペーサ高が4mmしかない関係でネジ穴が浅いこと。  ディスプレイは解像度を変更すると画面表示できないケースが多いので、FullHD固定のまま、RaspiConfig でピクセルダブリングを選択することで解決した。 (メニューサイズはMiddle) 実質960x540になってしまうけど、それほど不便ではない。 スクリーンキーボードを導入してみる。 Onboardというアプリをインストールして常駐させるとほぼスマートフォンと同じ文字入力環境が実現できる。  静電量量タッチパネルであれば文字入力もそれほどストレスが無い。プロジェクトを寝かせていた2年の間に、UMPCを消滅させたUIが部品としてDIY世界に降りてきていた。  ディスプレイの高機能化は好都合でも...

Deskmini A300で自作

 ASRockのMini-STXベアボーン Deskmini A300 でサブ機を組み立てた。  メインマシンより省エネな仕事用PCとして整備してみた。 構成 DeskMini A300 APU: Ryzen3 2200G (Radeon Vega8) RAM: Team DDR4 2666 SODIMM 8GBx2 SSD: NVMe WD Digital BLUE SN500 500GB Windows10 Home 組み立て  ケース自体もATX電源と同サイズ。M.2 SSDを使えばM/B上で全機能が完結する。  Mini-ITXですら大きすぎるように感じ始める。   木製PCケースを作っていた頃の苦労 も今は昔・・・。  Deskmini専用のCPUクーラーが同梱されているけれど、先人たちが開拓したAPU付属のWraith Stealthを細工して取り付ける方法を試してみた。  高さ方向については、Wraith Stealthからロゴの入ったファンガード外周の飾り部品を外した時点でケース内に収まる寸法になっていた。 ただし、CPUクーラー取り付け方向によっては、上蓋のネジマウント部と側面の爪の部位が干渉するので加工が要る場合がありそう。 ニッパで削った突出部。 クーラーの取り付け向きを変えれば加工する必要は無いかもしれない 上蓋中央部にもやや突起があるが、少しだけ外にたわませてマザボを差し込むと問題ない。 電力、性能  OSをインストールし、ドライバやソフトウェアを導入し終えたあと、 サンワサプライのワットモニターを使用して計測した。 ・アイドル時: 9W前後 ・ファイルアクセス時: 25~30W ・CPU高負荷時ピーク: 45W程度  アイドル時に90~100W前後消費していたメインマシンと比べると大幅に省エネになった。 外付け機器の少なさと、外部チップセットが無いことがだいぶ効いているようだ。 机に設置していると、静かな環境であれば距離の近さでファンの風切り音がかすかに聞こえてくる程度だ。  試しに19V3.42A(65W)のACアダプ...

G4 Modケースの改修と更新(2018)

ワークステーションとして、PowerMac G4 QuickSilver筐体を自作機にして早10年。   https://blog.kemushicomputer.com/2010/03/powermac-g4-dosv.html  昨年Ryzenに換装してからの悩みが、6年経過したATX電源の更新問題。 ケースそのものはATX電源が取付け可能だが、すでに絶滅した古い背面ファンモデルに限定されるため、交換候補が無くなってしばらく経っていた。  電源が選べないとシステム規模も頭打ちになってしまう。ということで内装工事を行い、まともなmicroATXケースとして改修した。  ATX電源を逆さまに設置するため、対応するネジ穴と開口部を加工した。 軟鉄なので電動ドリルとハンドニブラでなんとかなる。  新しいATX電源は、ENERMAX REVOLUTION DUO 750Wにした。 最新の電源だが、昔懐かしい背面ファンと底面ファンの2つを搭載しており、排気性能が高い。 電源を取り付けたところ。狙い通り底部ファンをケース内に向けることができた。 また、HDDとSSDの設置位置を底部に戻した。 側壁につけていた自作HDDブラケットを撤去したことで、マザーボード拡張スロット周辺の空間が広がり、ハイエンドGPUのリファレンスモデルを取り付けられるようになった。 ショートモデル縛りからの脱却  今回はRadeon RX VEGA 56(MSI)にして、システムをAMDで統一してみた。 OCしなければ電力もそこまで喰わず、広帯域メモリを積んでいてGPGPUとして面白いモデル。 ようやくマイニング需要が落ちてきて、価格も下がりつつあった。  電源には8ピンx2本を要求する。REVOLUTION DUOに2本ついているPCI-Eケーブルは最初から8ピン(6+2ピン)x2構成なので問題なかった。  以前まではシステム全体のピーク電力を300W以下に抑えてきたけれど、これで放熱が間に合う範囲であればパフォーマンスを追求できる。 Radeon RX Vega 56 (msi)  もともとPowerMacG4は中学生の頃、ナ...