スキップしてメイン コンテンツに移動

投稿

ラベル(satellite)が付いた投稿を表示しています

週末電波天文

自宅で電波観測 衛星運用で鍛えた心眼(?) を鈍らせないために、天体観測の延長で電波観測設備を構築してみることにした。   ひとつのきっかけはSkyWatcherのAZ-GTI。自動架台として数kgの物体を振り回せる能力があるのを知って興味が湧いた。  さらに21cm線専用のLNAを見つけた。SDRのオプションとして製造されたものが、安価に入手できる。  果たして都市雑音に包まれ、携帯基地局が林立する都市部という悪条件でも検出できるだろうか。   装置構成  先行事例に習い、アンテナと受信系はまず流用で済ませる。 例1  https://spectrum.ieee.org/geek-life/hands-on/track-the-movement-of-the-milky-way-with-this-diy-radio-telescope 例2  https://cyberdynesystems.ai/cheap-and-easy-hydrogen-line-radio-astronomy-with-an-rtl-sdr-wifi-parabolic-grid-dish-lna-and-sdrsharp/ 今回の実験における装置構成は以下のとおり。 Antenna: Wifi Grid dish (24dbi@2.4GHz ビーム角は10度ほど) LNA+Filter : SAWbird + H1  https://www.nooelec.com/store/sdr/sdr-addons/sawbird/sawbird-h1.html SDR          :  Airspy R2 or mini  Software  : Astro spy (SDRSharpに付属)  Wifi用のグリッドパラボラについて。同じスペックのアンテナをいろいろなサプライヤが提供していて、OEMかどうかはわからないが入手性は良い。グリッドなので多少の風があっても安心。21cm線観測だけなら天頂に向けて固定すればよいので、後述の架台は必要無い。    電動架台にはAZ-GTiを使用。アリミ...

屋外受信局の設備更新

 屋外にRaspberrypi2を設置してから、もう4年が経過していた。そんなに負荷をかけてないからか、SSHで定期的にメンテしていたけどSDカード不良になることもなくSDR鯖として動いてくれた。  いままでの屋外BOXは入れ物の選択、構造、気象対策については問題なかったといえるけれど、小さくてコネクタも増設できず、ちょこっと試したい装置を取り付けるにしても取り回しが悪かった。なので今回は箱を大型化し、不満点の解消に努めた。 設置性やコネクタ回りのハンドリングを改善 イーサネットHUBを設置 外部装置への電源分配機能 余ったスペースにボードコンピュータを設置 ボックス回り AC100Vラインは屋外用の防水延長ケーブルをそのまま箱に導くので、延長コードの先が防水容器になった形。  コンセント部はキャップ構造になっており、やや小さい外形でボックスに穴加工すれば、押し込むことで容易には引っこ抜けない構造になる。  内部のACタップの配線を固定したあとで、ボックスとコンセント部の隙間はシリコンコーキングで充填する。 タカチのBOXは内部のベースプレートも一緒に購入して、ここに穴をあけてタイラップで様々な部品を固定することにする。  内部の部品、ケーブルの設置基準は、簡単にベースプレートを取り外せること。(防水性にかかわる部品を除く) 縦置きとなるので、ケーブルは直下から取り出す。  下部のどこかにベントホールを設けておく。 完全密閉状態だとプラケースということもあり、一度侵入した湿気が逃げられず、気温変化の激しい日に内部が結露して故障する。  穴の場所は重力で水が抜けるような位置かつ、暴風雨で雨水が逆流しないような構造が良い。 ベースプレートの裏側などはおすすめ。設置場所によっては虫などの侵入を許すこともあり気を遣う。 足は屋外用マグネットベースにしたので、仮置きでもある程度固定できるようになった。  電源回り  ACアダプタまでは既製品の組み合わせで固めた。内部は短い延長コードと、USB電源付きの小型コンセントタップを設置。  限られた容積を有効活用できるような配置にする。  コンセントタッ...

ISS軌道を撮る

天頂を通過するISS 380km分の航跡が写っている  国際宇宙ステーション(ISS) の可視パスを撮り始めた。  仰角が80°を超える好条件では、天頂付近でマイナス4等星近くまで明るくなる。 人々の暮らしの頭上を人類の宇宙基地が音もなく渡っていく。 第一宇宙速度で移動しているにもかかわらず、400㎞も離れると見かけの移動速度は航空機に近い。 参考:ISSの可視パスを出してくれる便利なサイト  https://www.heavens-above.com 可視パスでフィルタをかけ、予報の中で仰角が50度を超える好条件な日を狙うと良い。  三脚に設置したカメラでこの軌跡を撮るにはいくつか方法があるけれど、お手軽なコンポジット撮影を試みた。  Nikon1 J5に1 Nikkor 6.7-13mmを付けて待ち構える。 この機種ではインターバルは最短で5秒、インターバルが遅延しない最大の露出時間は2.5秒となる。 換算18mmだと地平線から天頂までを映せるので、到来方向の空にカメラを向け固定し、撮影してみた。 撮影後は比較明合成をして完成。 11月21日  最初の撮影は光害カットフィルタ(kenko スターリーナイト)のみでの撮影。急いだためピント出しに失敗したが、明るい点光源が強調され、ソフトフィルターと同じ効果をもたらした。拡大しなければ問題ない 1月21日  プロソフトンAを入手したのでピントを出してから撮影。時刻的にはほぼ同一なのに、季節変化で空が明るくなっているのが分かる。 2回のパスを比較すると以下のようになる(Orbitronを使い、当時の軌道元期で比較)。 1月のパス軌跡がかなりまっすぐ。 軌道の途中から赤い線になるのは、地球の影に入ったということ。 この日は天頂通過後に日陰に突入した。 直前、ISSの反射光が夕焼け色に赤く変わり、あっという間に消えていった。低軌道衛星の夕焼けは短い。  合成した画像の個々の破線は、2.5秒間にISSが移動した距離も表している。軌道速度は秒速7.66kmだから、露光する間にISSは約19㎞移動している。  眼で追う場合、地平線近くで...

大きめの構造をプリントする

 Adventurer3を導入して4か月が経ち、5月に入ってからPETGフィラメントを使っている。PLAと似て匂いは無く、やや柔軟性があって加工しやすい。  テーブルの傾き テーブルが手前から見て右奥に向かって斜めに傾いており、特にPETGになると右奥の1層目が定着せずはがれるようになった。右奥まで使う広い造形だと、はがれて定着に失敗する。  右奥のプレートの下にアルミテープを斜めに張り付けて、奥に向かっての傾きを調節すると、PETGで10x10㎝を超える板状の造形も成功するようになった。 傾きなどは一度補正できてしまえばその後はしばらく無調整で使える。数値的に調整したいので、ダイヤルゲージを買って水平出しをしようと思う。  PETGのパラメーター調整も済んだので、150mm^3のプリントエリアを生かせる構造物として、CubeSatの1U規格構造のモックアップをモデリングしてみた。 家庭用の3Dプリンタには1Uサイズがちょうどよい。  分解して持ち運べるように、M3の六角ナットをはめ込み、各面のパネルを皿ねじで固定する組み立て式にした。Z面(上下)には前回の記事で作成した5㎝角基板用フレームを固定できる。  印刷時間は、メインのY+レール面が3時間半、X面が1時間半、Z面蓋が3時間 3種6面でだいたい16時間かかった。 最小板厚を2mmとしているのだが、もし壁の内部を充填したらもっとかかるだろう。  お仕事では3Uをよく目にするけれど、自宅のテーブル上で1Uサイズを組み立ててみると、これはこれでかなりの大きさがあると感じる。 20年前にこの体積を埋めていた通信機や基板群はどんどん小さく、高性能になっていった。構造規格は変わらないけれど、いまや立方体形状は、観測機器のためのサイズや発生電力を考慮した2U以上の実用衛星の方向か、薄く重箱のようにスタックされたテレメトリセンサの方向への岐路にある。  回路部品実装と構造積層を同時に行って、構造と回路基板の境目を無くす方向も面白いかもしれないなぁ… と、実物大の構造を手に取って考えたりするのであった。

高速試作フレーム

 まとまった空き時間ができたので、プロトタイプ用のフレーム構造を製作していた。試作のお供、3Dプリンタの存在もあり、思いついたアイデアが間違っているかどうか、数十分待てば結果が分かる。  通信機を備えた遠隔システムのプロトタイプなので、HILSを構築するにしても、構造として統合したまま全機能の検証作業ができると良い。アプリケーションが決まっていれば、便利なSoCを使って基板一つに全機能を落とし込むのもたやすい時代だけれど、高性能なSoCやMEMSは大規模な需要のお零れなので供給期間は短く、依存性を下げて乗り換えやすくしておかないと小規模では割に合わない。 要求は以下のとおり。 ・供給期間は最低5年くらい ・素早くテストしたい ・コンポーネントをとりかえて検証したい  基板をスタックしていく構造で、基板サイズは5㎝角にする。 最近は10cm角の基板でも最低価格で製造できてしまうのでコストメリットは減少しているけれど、基板面積が限られているほうが基板一枚に載せる機能を限定できてよい。 OBC基板と基板カバー ターゲットとして5㎝角で設計した32MZ基板を選択  基板間の電気接続は、ピンヘッダをやめて構造依存性の少ないハーネス接続とした。  デメリットとしてはハーネス加工と圧着作業がはんだ付け同様、専用工具や練度を要する作業であることが挙げられる。   基板間の配線と圧着作業は少ないに越したことはないので、 デジタル接続による配線本数の削減や、クリンプ済みリード線のバルク買いなどを活用していく。 コンポーネント例 通信機基板 OBC基板と通信機基板を連結した例。組み合わせが決まっているのならば、基板間ピンヘッダによる接続で完全に固定するのもあり。 実験用バッテリホルダ キャパシタバンク 5V 150F 光学系と撮影テスト 始めの頃は、Arducamモジュールのテストベッドとしてフレームを作っていた。光学系の種類によっていくつか構造部材を設計し交換する。 特に望遠レンズを固定し、屋外でテスト撮影するときに役立った。 Arducam 5MP と ESP8266の組み合わせ。 ...

Raspi地上局の改修

屋外にRaspberryPi2のRTL-SDR鯖を設置して2年が経過した。  https://blog.kemushicomputer.com/2016/05/blog-post.html 最近は打ち上げた衛星のためにアンテナ特性を調整し、デコード実験等に使用している。 SDRの運用以外にあまり使っていなかったが、いい機会なのでオーバーホールを兼ねてRaspberry Pi camera (旧版)を搭載した。  地上局の機能といえば、アンテナの監視も重要な機能の1つ。 ということで天頂のみを視野とした。 天板に設けていたガラス窓にカメラモジュールを設置する。 光学窓自体は2013年に製作してからずっと付けてあったが、長らく未使用だったし、ここ2年は熱防御板でふさいでいた。今回は熱防御板も簡素化し、ケースをアルミテープで覆うだけにした。 せっかく野外にカメラを設置するのであれば、やはり天体観測もしたい。 先駆者がいて、 meteotuxという比較明合成(コンポジット法)ソフトウェアがあった。 https://sites.google.com/site/meteotuxpi/home 撮影する時間帯を指定するだけで、数秒間の露出を合成して撮りためてくれる。 (残念ながら開発自体はここ数年止まっている様子)  5分間の合成写真10枚ほどを更に合成したもの。 監視対象であるアンテナが写っている。 アンテナの上の明るい軌跡は春の1等星アークトゥルスだ。  春霞で視界は良くないけれど、東京の空でも3~4等星くらいまでは写っていた。 (番外) SSHアクセスをするときは、movaXtermを使っている。   https://mobaxterm.mobatek.net/ 登録したセッションをクリックするだけで自動ログインしてくれる。 ディレクトリ表示やXサーバー機能があり、リモートGUIもやろうと思えば出来てしまう。 (最初は初期のBash on Windows でアプリケーションをGUI表示させたりしていた)