スキップしてメイン コンテンツに移動

投稿

ラベル(space)が付いた投稿を表示しています

週末電波天文

自宅で電波観測 衛星運用で鍛えた心眼(?) を鈍らせないために、天体観測の延長で電波観測設備を構築してみることにした。   ひとつのきっかけはSkyWatcherのAZ-GTI。自動架台として数kgの物体を振り回せる能力があるのを知って興味が湧いた。  さらに21cm線専用のLNAを見つけた。SDRのオプションとして製造されたものが、安価に入手できる。  果たして都市雑音に包まれ、携帯基地局が林立する都市部という悪条件でも検出できるだろうか。   装置構成  先行事例に習い、アンテナと受信系はまず流用で済ませる。 例1  https://spectrum.ieee.org/geek-life/hands-on/track-the-movement-of-the-milky-way-with-this-diy-radio-telescope 例2  https://cyberdynesystems.ai/cheap-and-easy-hydrogen-line-radio-astronomy-with-an-rtl-sdr-wifi-parabolic-grid-dish-lna-and-sdrsharp/ 今回の実験における装置構成は以下のとおり。 Antenna: Wifi Grid dish (24dbi@2.4GHz ビーム角は10度ほど) LNA+Filter : SAWbird + H1  https://www.nooelec.com/store/sdr/sdr-addons/sawbird/sawbird-h1.html SDR          :  Airspy R2 or mini  Software  : Astro spy (SDRSharpに付属)  Wifi用のグリッドパラボラについて。同じスペックのアンテナをいろいろなサプライヤが提供していて、OEMかどうかはわからないが入手性は良い。グリッドなので多少の風があっても安心。21cm線観測だけなら天頂に向けて固定すればよいので、後述の架台は必要無い。    電動架台にはAZ-GTiを使用。アリミ...

電源管理モジュールの製作

2021年が始まった。去年も仕事はあったけれど、納品先に実際に出向いたのは一度だけだった。 日常がじわじわ侵食されていく中、今年はどうなることだろう。   そういう状況下では、実験装置の構成を、どこでも誰でもできるようにしておくという作業がたくさん出てくる。 最小限の装置でPC単体での遠隔開発が行えるような手段。似たようなものはお仕事でもワンオフで何度か作ってきて、今までも役立ってくれている。ということで昨年は仕事の合間に組み込み部品としての試作をいろいろ行っていた。  実際のところ、単体ではマイコン付きFETとシャントモニタでしかない。最近遊んでいるTinyAVR-0をMCUとして載せている。 機能としては以下のとおり。 ・電源ONOFF制御 ・INA226による0.5mA単位 ~4A程度までの電流測定、アラート通知 ・電圧(スイッチ前後)の測定  セルフチェック機能 ・コマンドサーボのようなデイジーチェーン接続 ・拡張性 端面スルーホール加工にしてみた。他の基板への実装も簡単。 USB端子がついた基板は、TinyAVR-0つきFT234Xが載ったUSBシリアル変換器。UPDIプログラマ化できる 試作例1  試験コントローラ 試験用冷蔵庫に入れて、庫内で電源制御や温度監視をさせてみた。 温度センサにはLMT01を複数繋ぎ、庫内や測定対象に取り付ける。 制御例。MegunoLink上でプロットと電源制御を行った例。 試作例2 試作OBC基板の電源制御、モード管理、状態監視 開発中にOBCの電流値を参照したり、電源制御段階ごとの異常検知や、ブートモード切替などをソフトウェア上から行える。実装と冗長性の検討が長引いて回路図段階で何回もやり直したおかげか、試作一号機はとりあえず元気に稼働し始めた。   たいていのシステムには複数の機能別ボードや異機種コントローラが内包されているものだけど、それらの動作を最適化しながら、HILS的なシステムを作りあげるのは結構大変。  個人的に、まずはベースバンド部、アプリケーションプロセッサ、ストレージみたいなまとまりを作りこむために、共通化配線とI/F基板1つでPCにつないで開発できることを目標としている。(電力規模100mW~1W以下)

ISS軌道を撮る

天頂を通過するISS 380km分の航跡が写っている  国際宇宙ステーション(ISS) の可視パスを撮り始めた。  仰角が80°を超える好条件では、天頂付近でマイナス4等星近くまで明るくなる。 人々の暮らしの頭上を人類の宇宙基地が音もなく渡っていく。 第一宇宙速度で移動しているにもかかわらず、400㎞も離れると見かけの移動速度は航空機に近い。 参考:ISSの可視パスを出してくれる便利なサイト  https://www.heavens-above.com 可視パスでフィルタをかけ、予報の中で仰角が50度を超える好条件な日を狙うと良い。  三脚に設置したカメラでこの軌跡を撮るにはいくつか方法があるけれど、お手軽なコンポジット撮影を試みた。  Nikon1 J5に1 Nikkor 6.7-13mmを付けて待ち構える。 この機種ではインターバルは最短で5秒、インターバルが遅延しない最大の露出時間は2.5秒となる。 換算18mmだと地平線から天頂までを映せるので、到来方向の空にカメラを向け固定し、撮影してみた。 撮影後は比較明合成をして完成。 11月21日  最初の撮影は光害カットフィルタ(kenko スターリーナイト)のみでの撮影。急いだためピント出しに失敗したが、明るい点光源が強調され、ソフトフィルターと同じ効果をもたらした。拡大しなければ問題ない 1月21日  プロソフトンAを入手したのでピントを出してから撮影。時刻的にはほぼ同一なのに、季節変化で空が明るくなっているのが分かる。 2回のパスを比較すると以下のようになる(Orbitronを使い、当時の軌道元期で比較)。 1月のパス軌跡がかなりまっすぐ。 軌道の途中から赤い線になるのは、地球の影に入ったということ。 この日は天頂通過後に日陰に突入した。 直前、ISSの反射光が夕焼け色に赤く変わり、あっという間に消えていった。低軌道衛星の夕焼けは短い。  合成した画像の個々の破線は、2.5秒間にISSが移動した距離も表している。軌道速度は秒速7.66kmだから、露光する間にISSは約19㎞移動している。  眼で追う場合、地平線近くで...

デスクトップ地球軌道

1億分の1地球儀で遊ぶ  昨年の年末、無印良品で販売されている白地図地球義を購入した。    実は昭和カートン製で、けっこうしっかりした作り。  2種類の大きさがあったが、小さな1億分の1スケール(直径約12cm)のものを購入。  一億分の1スケールだと、1mmが100kmに相当するのでわかりやすい。 定規を垂直に立てて観察してみよう。  生存圏の大気は1mm以下しかない。ISSの軌道も表面からわずか4mm。  この高度の人工衛星は、軽いものだと1年以内に大気圏に突入してしまう。(突入直前に高度200㎞を廻る電波を受信していたことがある)   https://blog.kemushicomputer.com/2016/11/blog-post.html  観測衛星も1cm以内の低軌道に集中している。    地球儀に輪ゴムを張り渡すと、任意の低軌道衛星の経路を模擬できる。 輪ゴムが赤道と成す角度が軌道傾斜角だ。 なお、きちんと円形に張るのは慣れが必要だった。  冒頭の写真ではISSの軌道傾斜角を模擬している。  宇宙まで何ミリメートル?  宇宙スケールで物思いにふける場合、宇宙から肉眼で地球を見るときのスケールが気になることがあった。地球儀をスケールの基準として計算してみると、1億分の1の地球近傍空間はこんな縮尺になる。 地球低軌道 約4~10mm   中軌道 約20cm  測位衛星群の居所 静止軌道 約35.7cm 月 約3.8m  太陽-地球系L1 15m  静止軌道からの眺めを再現するなら、机の上でちょうど良さそうだ。  机の上で、静止軌道の位置に顔を置くことで、気象衛星の視点が得られる。  ただし、この距離では両目の視差だけでも1億倍すると6千km、経度にして9度ほど離れている。 片目で見ないと本来見えないはずの地平線の向こう側を見通せてしまう。 片目をつぶろう。 静止軌道に並んで浮かぶ直径2500kmの眼球を想像してみよう…。       地球近傍ツアー参加シミュレーション  ここはひとつ、地球近傍軌道を巡るツアー旅行に参加していると仮定し、手持ちのカメラで地球を撮る構図を体感してみた。...

Raspi地上局の改修

屋外にRaspberryPi2のRTL-SDR鯖を設置して2年が経過した。  https://blog.kemushicomputer.com/2016/05/blog-post.html 最近は打ち上げた衛星のためにアンテナ特性を調整し、デコード実験等に使用している。 SDRの運用以外にあまり使っていなかったが、いい機会なのでオーバーホールを兼ねてRaspberry Pi camera (旧版)を搭載した。  地上局の機能といえば、アンテナの監視も重要な機能の1つ。 ということで天頂のみを視野とした。 天板に設けていたガラス窓にカメラモジュールを設置する。 光学窓自体は2013年に製作してからずっと付けてあったが、長らく未使用だったし、ここ2年は熱防御板でふさいでいた。今回は熱防御板も簡素化し、ケースをアルミテープで覆うだけにした。 せっかく野外にカメラを設置するのであれば、やはり天体観測もしたい。 先駆者がいて、 meteotuxという比較明合成(コンポジット法)ソフトウェアがあった。 https://sites.google.com/site/meteotuxpi/home 撮影する時間帯を指定するだけで、数秒間の露出を合成して撮りためてくれる。 (残念ながら開発自体はここ数年止まっている様子)  5分間の合成写真10枚ほどを更に合成したもの。 監視対象であるアンテナが写っている。 アンテナの上の明るい軌跡は春の1等星アークトゥルスだ。  春霞で視界は良くないけれど、東京の空でも3~4等星くらいまでは写っていた。 (番外) SSHアクセスをするときは、movaXtermを使っている。   https://mobaxterm.mobatek.net/ 登録したセッションをクリックするだけで自動ログインしてくれる。 ディレクトリ表示やXサーバー機能があり、リモートGUIもやろうと思えば出来てしまう。 (最初は初期のBash on Windows でアプリケーションをGUI表示させたりしていた)

H-IIA F32 ロケット雲

17:55 RX100M3  70mm 1.3秒露光 ISO100  トリミングと明るさ補正済み 1年ほど前にロケット由来の発光雲を目撃 していたが、今回再び目撃することができた。 H-IIA 32号機の打ち上げは16時44分で、関東では17時に日没となり、その30分後あたりから南南西の方角に雲が現れた。 今回は定点で現れてから消えるまでを撮影することができたが、雲全体が南に移動するにしたがって大きく広がっていく過程を捉えることができた。 17時半ごろの出現当初の様子 18時を過ぎると、肉眼ではほとんど見えなくなっていた(10秒露光) 前回も今回も冬季だったので、高層大気では東向きの風が吹き、雲を運んでいたのだろうか。 雲といっても、発生高度から算出すると、直線距離にして数百キロ以上先のものを見ていることになるので、普段の生活とはかけ離れたスケールのものを眺めていることになる。 つい先日まで、鹿児島の南端でお仕事していたこともあって、なかなか感慨深い。

[KSP]KSP的イオンエンジン探査機

宇宙開発ゲーム Kerbal Space Program(以下KSP)には、イオンエンジンがある。 キセノンタンクと電源があれば、やたら⊿Vを確保できるので、惑星間航行にはおあつらえ向きだ。 問題はTWRが低いのと、割と電力を必要とすること。 とはいっても、単体でMinmusレベルの天体に着陸するには十分なパワーを持っている。  公式のサンプル機体のひとつに、イオンエンジン探査機が含まれている。 RTG2本が電源で、最初の頃はフルスロットルだと直ぐ電力が尽きるので使えなさそう、と思いこんでいたが、単純に電力が足りないなら推力を絞ればいいということに最近ようやく気付いた。  スロットル15%ほどであれば、キセノンが尽きるまで推進し続けることができる。 惑星等の影にはいっても加速を続けることができるので、太陽電池よりも使い勝手が良かった。  いずれにしても、噴射中はゲーム内時間を操作できないので、イオンエンジンを運転しているとかなりの時間が必要になる。 試しにサンプル機体からバッテリを外し、低軌道から連続運転してみた。軌道進行方向へ姿勢制御しつつ噴射し続けた結果、30分で(Kerbalの)第二宇宙速度に到達した。 TWR1超えの液酸エンジンを選べば2分程度で終わる工程だけれど、かなり現実離れした性能をもっている。 キセノンタンクは大型タイプもある。 どうせならフルスロットル可能な電力を確保したい。 簡単に作ると下のようになった。 ステーション向け大型太陽電池アレイを取り付けたもの。 KSPの太陽電池は、設置型と展開式にわけられる。 小型展開式は設置型パネルを6枚並べた面積をもち、設置するだけで太陽を自動追尾してくれる。 大型の展開パネルは上の写真のとおりで、一基だけで有り余るエネルギーを発電してくれる。 便利ではあるが、ロマン成分が足りないので、パネル選択をこだわってみた。 V1.1のイオンエンジン一基はフルスロットルで、6枚パネルx4程度の電力を消費する。 惑星間では太陽と推進軸は垂直に位置する事が多い。 今回はパネル角固定縛りで設計してみた。 惑星間をゆく探査機は、太陽に盾を向ける騎士みたいなイメージを勝手に抱いている。 打ち上げ機 3段式 V1...

USBカメラで星を撮る

高感度なUSBカメラをAliexpressで注文し、天文用に組み立ててみた。 搭載センサはONsemiのAR0130CSで、1.2Mピクセル カラーのバージョン。 普通のCMOSセンサに比べると、ダイナミックレンジや量子効率がかなり高い。 ソニー製のセンサなどと共に、夜に強い監視カメラ向けとして人気のようで、センサ名で検索するといろいろな形態で販売されている。 ボードカメラのモデルは40ドル程度で入手できる。  同じセンサを搭載した望遠鏡用のカメラ/オートガイダーも存在する。 低価格な望遠鏡のカメラとしても幾つかのメーカーから出ているようだ。  値段をケチるために筐体無しのものを選んだが、動作中は結構熱くなるので、放熱等を考えると筐体モデルのほうが良いのかもしれない。 消費電力は0.5W程度だった。 タカチの小型ケースのネジ穴と基板のネジの配置がぴったりだったので、簡単に固定台をつくり、自撮り棒についていたスマートフォン用のホルダを使って、三脚に固定した。 SharpCapという天文用のカメラ制御ソフトを使用して、キャプチャを行ってみた。UVC対応なので、特にドライバ等は必要ない。 このカメラは露出時間を最大にすると、撮影間隔が1~2fpsに落ち、街明かりが飽和を起こす程度まで明るくなる。 iPhoneのカメラと比べると、数段くらい暗く撮影出来ている様子。 ボードカメラでお馴染みのM12規格のレンズだが、Aliexpressでいろいろなレンズがみつかる。1000円以下のものは大半が車や監視カメラ用なので、解像度を考慮すると、Megapixel対応と謳うものがよさそうだ。素子面積は1/3インチなので、焦点距離と併せて画角を考慮すると良い。 魚眼レンズが多いけれど、空に向けた場合、広すぎると細かいディテールが失われやすい。 最近はGoPro用の高級(?)レンズも増えてきて、すごいお値段なものもあるけど、撮像素子が1.2Mピクセルなので、そこまで違いはなさそう。  明るさはF2程度のものが大半なので、より明るいレンズを使ってみたいときは、CSマウントに交換するのも良い。どちらかというと、CSマウントのほうがピント合わせが楽で良い。 aitendoでも...