スキップしてメイン コンテンツに移動

ギブスンのトリロジー

1972年のNewsweek誌 (押入れから発見されたもの)


The future is already here — it's just not very evenly distributed.

ウィリアム・ギブスンの言葉。 


ギブスンの作品を初めて読んだのは高校3年の頃、模試の途中で立ち寄った本屋で買った「ニューロマンサー」 だった。 サイバーパンクの最高峰、独特な言い回しでカルト的な人気がある。 とはいえ、書かれたのは自分が生まれる4年前で、サイバースペースはすでに古典と化していた。 

短編ほか、代表的な3部作が3つあるが、 ニューロマンサーの後に書かれた2つの三部作はあまり噂を聞かなかった。 訳書も絶版で、中古本しかなく入手性がよくない。なので原書(Kindle版)を読破した。

 この3つのシリーズを通してみると、ギブスンの作品はその当時の時代が色濃く反映されているのだと思う。技術好きなのでガジェット描写に注目してしまうけど、あくまで主役はそのガジェットが偏在する世界で暮らす人間達の物語だ。

 橋三部作と、SF要素の無くなった新三部作についても、現在のネットや技術文化で起こっている現象を先取りしているようで、とても興味深い。 もっと入手性が良いとおすすめしやすいのだが…。

ということで、原書で読んだシリーズのあらすじを適当に整理しておこう。

スプロール三部作 「ニューロマンサー」、「カウント・ゼロ」、「モナ・リザ・オーヴァドライブ」

80年代を1世紀くらい続けた先の近未来世界で、サイバースペースのハッカー、サイボーグの殺し屋といったヤバい仕事人たちがAIにこき使われるお話(超意訳)。
 膨大な情報を解釈するために用意された仮想現実とネット。ソフトウェアとして流通する技能、レンタルビデオのように氾濫する五感メディアと人格ROM構造物。 ヒトがガジェットと化した未来世界で、混沌から生まれようとしている新たな知性…

 復刊もされているため、たいていの人がニューロマンサーから入門すると思うけれど、入門が一番の難関だったりする。 自分の耳の後ろには早い段階でSF用ソケットが埋設されていたので、それほど困難は無かった…。

 後の作品になるほど、落ち着いた文章になってゆくのだが、古典と化したこのシリーズしか知らない人が多そうだ。

 入手性はあまりよくないけれど、 短編集「クローム襲撃」も読めば文体に免疫がつくかもしれない。デビュー作の「ホログラム薔薇のかけら」や、「記憶屋ジョニイ」「クローム襲撃」では、スプロールシリーズにちらつく設定の断片を垣間見ることができる。 個人的には「辺境」がお気に入り。


橋三部作  「ヴァーチャル・ライト」、「あいどる」、「フューチャーマチック(All Tomorrow's Parties)」

 2000年台、大地震後の大都市(サンフランシスコ、東京)が主な舞台。放棄された橋に居住する人々、ハッカーのネット国家、集積された個人情報を利用するメディア産業といった背景の中で、それらの核心にうっかり触れた主人公たちがトラブルに巻き込まれるお話。

この世界のヴァーチャル・リアリティはゴーグルをはめる没入型の高解像度版セカンドライフだ。スプロールシリーズで登場した霊的な抽象度の機構をより現実に近いものへ置き換えているように思う。 例外な便利技術は、物語の鍵として登場するドレクスラーのナノマシン(ナノアセンブラ)だろうか。

「あいどる」「フューチャーマチック」では麗投影というバーチャルアイドル(AI ?)が登場して、物語の重要な要素(人物)となる。 初音ミク現象を思い起こさずにはいられない。


新シリーズ 「パターン・レコグニション」、「スプーク・カントリー」、「ゼロ・ヒストリー」 
(Blue Ant 三部作)

最近完結したシリーズ。 現実世界の時間軸で、SF無しのフィクションとなっているけれど、大型書店の洋書コーナーで見かけると必ずSFの書架に配置されているのがなんともいえない。

 ファッションや広告産業を軸に、同時多発テロ事件以降の社会とそこで生きる人々、監視社会がテーマとなっている。 

現在という単位のライフサイクルがどんどん短くなり、サイバースペースと現実という単純な2分法が通用しなくなった現代。

  主人公たちは、謎めいた広告企業の主、Bigendの依頼を受け、ブランド産業や、現実世界の物流網といった構造の中でとある真実を追う。 

ストーリーはスプロールシリーズを思わせる流れで進む。サイバースペースデッキはMacbookになり、人物情報はGoogleとWikipediaが教えてくれる。メディアアート(AR、ジオロケーション)、iPod、iPhone などが物語のガジェットとして頻繁に登場する。 ゼロ・ヒストリーでは今やブームとなったあのガジェットやこのガジェットがたくさん登場する。 

*********************

1975年のNewsweek誌

物語と現実の位相。

三部作の世界観も、書かれた年代ごとにかなりアップデートを経ていて、それぞれを間隔をあけて読み直すと、だいぶ見方が変わってくる。
 これからも三部作世界の断片を現実に見出すだろうし、現実が三部作の中に見出されるのだろうなぁ と。

Kindleと電車通勤はとても相性が良い。

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察...

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア...

CANトランシーバーを使わずにCAN通信をする

 CANバスの物理層は差動通信で、RS485の様にマルチドロップ接続が可能。  自動車におけるノイズ環境でも通信が成立するように、トランシーバICには様々な対策が施されている。  一方で、基板にマイコンを複数載せて、例えばブロードキャストメッセージを含んだ通信をさせたいとなったとき、ハードウェアとしてデータリンク層にあたるコントローラが実装されていて、メッセージフィルタ等が可能なCANバスは魅力的だ。しかし、長くても1m未満の配線長で差動ドライバのバスを駆動するのは電力的なペナルティが大きい。 CANバスの構成  トランシーバーには5Vレベルと3.3Vレベルの製品があり、車載以外だと省電力化のために3.3Vバスを採用する例があるらしい。(電圧が低いほうがドミナント時の電流は下がるので)製品によってはフォールトトレラントのための様々な機能が付加されている。    トランシーバーをつかわず、UARTの様に単純に接続することもできる。過去にはこのようなアプリケーションノートがあった。 On-Board Communication via CAN without Transceiver https://www.mikrocontroller.net/attachment/28831/siemens_AP2921.pdf CANコントローラの入出力を1線式マルチドロップバスとしてつなぐことで、トランシーバーが無くても通信が可能になる。規格外の使い方ではあるけれど、大幅に単純、かつ省電力になる。 コントローラのみでの接続 R4 MinimaにはCANコントローラーが内蔵されているため、上記アプリケーションノートの様に接続してみた。ダイオード2個と数kΩのプルアップ抵抗だけでサンプルコードの通信ができた。 https://docs.arduino.cc/tutorials/uno-r4-minima/can  とりあえず1Mbpsでも通信できていたけれど、Lowレベルの電位が下がり切っていないので、OD出力のバッファをTXに挟むとよいかもしれない。  R4 Minimaのコントローラのみで通信させている様子(250kbps) https://github.com/sandeepmistry/arduino-CAN/blob/master/API.md ライブラリの実装は以下で確認...

UNO R4 Minimaの仕様を眺める

CANバス内蔵Classicボードたち。 しかし割高になってしまった… Uno R4 Minimaを入手したので遊びつつ、どのような実装になっているのか、仕様を眺めてみた。 UNOは現在のArduino製品の中ではClassic Familyというカテゴリに入っており、歴史的なフォームファクタを継承している。ルネサス製MCUの採用で話題だけれど、5V単電源動作可能なARMマイコンとしては高機能だ。 要点としては、初学者向けのClassicファミリにCortex-M4が降りてきて、内蔵RTC、DAC出力、CANバスといった機能にもAPIレベルで対応しているという点になる。  スペックだけ見ると、反射的に3.3Vで動いてほしいとかいろいろ要望が湧いてくるが、ターゲットはあくまで初心者なのを忘れないようにする。 (いい感じの互換ボードに期待) ボードとピンマップを眺める 公式サイトのボード紹介ページでは、回路図と基板図をAltium365ビューワーで見ることができるようになっていた。回路図で抵抗を選択すると詳細が表示されるし、基板図上の実装と連携して位置をハイライトできたりする。 Minimaの実際の基板には16MHzの水晶は空きパターンとなっている。内蔵オシレーターで動いているようだ。 Minima 回路図 https://docs.arduino.cc/resources/schematics/ABX00080-schematics.pdf Wifi R4回路図 https://docs.arduino.cc/resources/schematics/ABX00087-schematics.pdf MinimaとWifi R4ではソケットに引き出されたSPIバスのマッピングが異なっている。これに伴いCANで使うピンも位置が変わっている。APIが用意されてるのにピンマップ表で表記していないのはボード依存のためかもしれない。 CANを使いたければシールド設計で対処するしかなさそう。  他にも、Minimaのソケットの3.3V出力は、Minimaのデータシートに書いてある通りMCUの内部電圧を生成しているLDOの出力を引き出している。そこまでやるのかというくらい割り切っている。  内部レギュレータから引き出せる電流量はArduinoとしては表向き載っていないけれど、ルネサス...