スキップしてメイン コンテンツに移動

独立電源の実験#2 

 夏といえば、統合試験と環境試験が立て続けに始まる季節。発生する怪奇現象(不具合)を退治し、スケジュールで肝試しを行っていたら、いつのまにか夏は終わってしまった…

その脇で、前回手配線した独立電源試作機の実験結果をもとに基板のアートワークを行い、新型OBC基板と電源基板、化粧板をelecrowに発注。
KiCADのボードをVRMLで出力すると、Windows10の3Dビューアで簡単に表示することができる。

 5㎝角以下だと最安値になるので、試作にかかるコストはどんどん下がっている。 もう手配線はよっぽどのことがないとやらなくなってきた。

OBC644-10D rev:E

OBC基板もバグ修正と端子増設でバージョンアップしている。
・SPIとFTDI配列を統合し、GPIO2つとシステム電源電圧(3.3V)出力端子を追加。
外部基板のIC(デジタルセンサやレベル変換、バススイッチ)にもシステム電圧が必要だったのと、UARTとSPI用の制御用端子として新たにGPIOを引き出した。
ATmega644のGPIOピンをすべて利用できるようになった。



拡張基板スタック

OBC644用の拡張基板だけど、ピンヘッダ継ぎ足し地獄は無駄に階層が増えてしまうので、2層基板を2枚重ね合わせてみた。疑似的に4層基板となる。貼り合わせる面にクロストークが心配な配線は避けよう。
 

 裏面はSPI-ROMが2つ乗るので、そのエリアを避けて基板外形を設定。 OBC644基板は1mm厚、拡張基板は0.6mm厚で発注していて、張り合わせれば1.6mmの標準の厚みとなる。
 2つ重ねてピンヘッダにはんだ付けするので、貼り合わせでシビアな工程は特に無い。
今回は試しにu-bloxのMAX-M8Qと、マイコンの書き込み用に基板対電線コネクタ(GH5ピン)を搭載した。 単体でGPSロギングにも使えるだろう。
  アンテナはU.FLコネクタを設けて、外部から引き込む形にした。

電源系統&構造体

 

 手配線プロトタイプとほぼ同じ構成の電源系統とした。太陽電池は2系統入力可能。 キャパシタバンクの上流/下流のスイッチは逆流防止機能付きのロードスイッチにしている(ただし、ON時の逆流は阻止できないので理想ダイオード動作にはならない)
キャパシタバンクに使ったパナのゴールドキャパシタは18650セルとほぼおなじサイズになっていて、競合他社の製品よりスリムで細長いタイプ。 
 小容量の起動用コンデンサはいつもどおり単純化のためにショットキーダイオードORだが、順方向電流が100mA以下のものに交換した。1Aクラスにしてしまうと漏れ電流により、他の系統から逆流が起きてゆっくりと充電されてしまう。
 太陽光が常時あれば、大容量キャパシタを使わなくても、間欠駆動状態でテレメトリを送信可能。

 構造的には、電源基板が各基板のハブとなっている。キャパシタバンクの左右の空間に、FTDI配列対応の無線モジュール基板や、GPIO、UART、I2Cのセンサを挿して設置できるようにした。
 拡張要素はOBC基板の電源管理下にあり、OFF時にバス配線などを切り離せるようにしている。

 日照がない場合、外付けで電池を搭載することで安定して稼働させることができる。
下記は拡張ベイに単4電池をCRD経由で接続したもの。 大電流を取り出せない大容量の1次電池との組み合わせも考えられる。


電源基板自体にPIC12F用のパターンを用意したので、基板単独でも電源管理やOBC系統のリセット介入ができる。 



薄曇りの日没時に試験運用したときのデータ。 曇りなのでフル充電にはならず、テストのため1分毎に無線送信、3Vで送信停止なので、日没後1時間ほどで停止した。
 試作機ではデフォルトで2.7V以下になるとでマイコンのBORが働くが、 システム的には1.8Vまで動作可能なので、ヒューズビットの設定でBORを1.8Vに設定しなおした。

PCBアンテナ(おまけ)

 化粧板として発注する基板に、GPS L1用のPCBアンテナパターンを作ってみた。これでも測位できたが、あまり性能はよくなかった。VNAで測定してもらった結果、2.4G帯に感度があることが判明。思ったより短縮効果が無かった…。

 もともとパッシブアンテナを付ける場合、配線長は100mm以下で近接配置が推奨されている。 素子の特性が悪いと結構厳しい。
  
 とりあえずMAX-M8QのRF入力に同軸給電のための受動部品を追加して、市販のアクティブアンテナを取り付けて解決とした。
同軸給電に改造
AliexpressでGNSS対応のアクティブアンテナを入手して取り付け

過去に入手してあったアクティブアンテナ。 これはGPS L1のみ

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察...

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア...

CANトランシーバーを使わずにCAN通信をする

 CANバスの物理層は差動通信で、RS485の様にマルチドロップ接続が可能。  自動車におけるノイズ環境でも通信が成立するように、トランシーバICには様々な対策が施されている。  一方で、基板にマイコンを複数載せて、例えばブロードキャストメッセージを含んだ通信をさせたいとなったとき、ハードウェアとしてデータリンク層にあたるコントローラが実装されていて、メッセージフィルタ等が可能なCANバスは魅力的だ。しかし、長くても1m未満の配線長で差動ドライバのバスを駆動するのは電力的なペナルティが大きい。 CANバスの構成  トランシーバーには5Vレベルと3.3Vレベルの製品があり、車載以外だと省電力化のために3.3Vバスを採用する例があるらしい。(電圧が低いほうがドミナント時の電流は下がるので)製品によってはフォールトトレラントのための様々な機能が付加されている。    トランシーバーをつかわず、UARTの様に単純に接続することもできる。過去にはこのようなアプリケーションノートがあった。 On-Board Communication via CAN without Transceiver https://www.mikrocontroller.net/attachment/28831/siemens_AP2921.pdf CANコントローラの入出力を1線式マルチドロップバスとしてつなぐことで、トランシーバーが無くても通信が可能になる。規格外の使い方ではあるけれど、大幅に単純、かつ省電力になる。 コントローラのみでの接続 R4 MinimaにはCANコントローラーが内蔵されているため、上記アプリケーションノートの様に接続してみた。ダイオード2個と数kΩのプルアップ抵抗だけでサンプルコードの通信ができた。 https://docs.arduino.cc/tutorials/uno-r4-minima/can  とりあえず1Mbpsでも通信できていたけれど、Lowレベルの電位が下がり切っていないので、OD出力のバッファをTXに挟むとよいかもしれない。  R4 Minimaのコントローラのみで通信させている様子(250kbps) https://github.com/sandeepmistry/arduino-CAN/blob/master/API.md ライブラリの実装は以下で確認...

UNO R4 Minimaの仕様を眺める

CANバス内蔵Classicボードたち。 しかし割高になってしまった… Uno R4 Minimaを入手したので遊びつつ、どのような実装になっているのか、仕様を眺めてみた。 UNOは現在のArduino製品の中ではClassic Familyというカテゴリに入っており、歴史的なフォームファクタを継承している。ルネサス製MCUの採用で話題だけれど、5V単電源動作可能なARMマイコンとしては高機能だ。 要点としては、初学者向けのClassicファミリにCortex-M4が降りてきて、内蔵RTC、DAC出力、CANバスといった機能にもAPIレベルで対応しているという点になる。  スペックだけ見ると、反射的に3.3Vで動いてほしいとかいろいろ要望が湧いてくるが、ターゲットはあくまで初心者なのを忘れないようにする。 (いい感じの互換ボードに期待) ボードとピンマップを眺める 公式サイトのボード紹介ページでは、回路図と基板図をAltium365ビューワーで見ることができるようになっていた。回路図で抵抗を選択すると詳細が表示されるし、基板図上の実装と連携して位置をハイライトできたりする。 Minimaの実際の基板には16MHzの水晶は空きパターンとなっている。内蔵オシレーターで動いているようだ。 Minima 回路図 https://docs.arduino.cc/resources/schematics/ABX00080-schematics.pdf Wifi R4回路図 https://docs.arduino.cc/resources/schematics/ABX00087-schematics.pdf MinimaとWifi R4ではソケットに引き出されたSPIバスのマッピングが異なっている。これに伴いCANで使うピンも位置が変わっている。APIが用意されてるのにピンマップ表で表記していないのはボード依存のためかもしれない。 CANを使いたければシールド設計で対処するしかなさそう。  他にも、Minimaのソケットの3.3V出力は、Minimaのデータシートに書いてある通りMCUの内部電圧を生成しているLDOの出力を引き出している。そこまでやるのかというくらい割り切っている。  内部レギュレータから引き出せる電流量はArduinoとしては表向き載っていないけれど、ルネサス...