スキップしてメイン コンテンツに移動

CAL.4809の開発(1)

 2018年の新作。ATmega4809を使った試作ということで、CAL.430FR(2015年)の後継機を製造した。
  CAL.430FR https://blog.kemushicomputer.com/2015/03/cal430fr1.html

 今回はケースの作成にも挑戦してみたので、3Dプリンタでの製造は別の記事にまとめる。

 430FRはKiCadの練習で作ったけれど、それ以来3年間で設計、製造、実装した基板は結構な数になった。
 今年は大きなプロジェクトも一段落したので、自分の趣味プロジェクトも原点回帰してみることにした。
3年半前の基板(左)と今回の基板(右)

シルクに印字したQRコード。思ったよりコントラスト不足で認識率が良くない 黒基板とかだとアリかも
 36mm角の基板サイズ、コネクタ位置等はCAL.430FRと同じだが、マイコンはATmega4809にして、新たに赤外線トランシーバーを載せた。IrDAにした理由はUSARTにモデム機能があったからというだけだけれど、一応通信機能を持った基板となった。これで規格の波に数周遅れのスマートウォッチが作れる。
 サイドボタンは1つ削減して3つになっている。

12月に入り、夏以降 ほとんど音沙汰のなかったArduino Uno Wifi rev2がとつぜん販売開始となっていた。
日本では無線LANモジュールの認証作業の完了待ちらしいけど、そのうち入手できるだろう。 ボード外観を見た感じではレベルシフタが一つ増えていて、WifiモジュールとのIFまわりに仕様変更が見て取れる。

  リリースされたばかりのArduino Uno Wifi rev2向けのボード定義も配信が始まり、ボードマネージャ経由でインストールすることができた。

 ボード定義で面白いのは、ATmega4809としての定義と別に、端子レベルでATmega328Pをエミュレートするコンパイルオプションがあること。Wifiモジュールなどとの通信制御を遮蔽しつつ、UNOと同じピン定義でプログラミング可能なようだ。

  デバイス定義を参考にして、自作ボード用の定義ファイルを作成してArduino互換として動かす環境を試験的に作ってみている。 4809は内蔵オシレータが20MHz品と16MHz品があり、今までは20MHz品の流通が主だったので、クロック周りは20MHzとその分周比にあわせて定義を追加する必要があった。 電源が3Vのコイン電池なので、ボード定義でクロックは5MHzとし、1.8Vまで動作できるようにする。 BORなどはヒューズビットにあたるので、書き込みの際はプログラマで予めセットしておく。

今のArduinoIDEでの書き込みはコンパイル済みバイナリをスケッチフォルダに出力できるので、出力されたバイナリをATmelStudio7のツールで呼び出し、PICKIT4を使って書き込んでいる。



 IO回りやUART,SPIなどは普通に動かせていて、CAL.430FR用に作ったスケッチのIO番号だけ振り替えてそのままメモリ液晶を動かすことができてしまった。

 SPIの加速度センサとの通信がうまくいってないけど、とりあえず表示まで確認した。
4809自体は既存のAVRよりも低コストで使い勝手が良いので、Xplainedシリーズのようなデバッガ付きで最小限の評価ボードとして出てくれると良いなぁ。

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察...

【サボテン】太陽電池の結線

 久しぶりにサボテン計画。 忙しかったり投薬治療直前でだるかったりして、かなり放置していた。 さぼてんも不機嫌そうだ。 せっかくなので、園芸用の水受けに移す。  関節痛で寝込んでる間に、エイプリルフール終わってましたね^^・・・。  太陽電池の展開機構を想像したが、まずは太陽電池の結線を済ませよう。  配線を綺麗にまとめたくていろいろ探していたら、千石電商でぴったりなものを見つけた。 LEDリング基板 というらしい http://www.led-paradise.com/product/629?  本来はチップLEDをリング状にまとめる代物。 イレギュラーな使い道だ。   今度は小径のを買って、GX200のリングライトに仕立て上げよう。   嬉しいことにフレーム径にジャストフィット。 配線を綺麗にまとめられた。   太陽電池の接続部。逆流防止用にショットキーダイオードを入れている。 かなりスッキリ。 蛍光灯下 500ルクスでの実験。 EDLCは10Fを使用。  ちゃんと充電が行われている。 といっても、とてもとてもゆっくりとだけれど・・・。

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch...

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア...