スキップしてメイン コンテンツに移動

投稿

5月, 2019の投稿を表示しています

大きめの構造をプリントする

 Adventurer3を導入して4か月が経ち、5月に入ってからPETGフィラメントを使っている。PLAと似て匂いは無く、やや柔軟性があって加工しやすい。  テーブルの傾き テーブルが手前から見て右奥に向かって斜めに傾いており、特にPETGになると右奥の1層目が定着せずはがれるようになった。右奥まで使う広い造形だと、はがれて定着に失敗する。  右奥のプレートの下にアルミテープを斜めに張り付けて、奥に向かっての傾きを調節すると、PETGで10x10㎝を超える板状の造形も成功するようになった。 傾きなどは一度補正できてしまえばその後はしばらく無調整で使える。数値的に調整したいので、ダイヤルゲージを買って水平出しをしようと思う。  PETGのパラメーター調整も済んだので、150mm^3のプリントエリアを生かせる構造物として、CubeSatの1U規格構造のモックアップをモデリングしてみた。 家庭用の3Dプリンタには1Uサイズがちょうどよい。  分解して持ち運べるように、M3の六角ナットをはめ込み、各面のパネルを皿ねじで固定する組み立て式にした。Z面(上下)には前回の記事で作成した5㎝角基板用フレームを固定できる。  印刷時間は、メインのY+レール面が3時間半、X面が1時間半、Z面蓋が3時間 3種6面でだいたい16時間かかった。 最小板厚を2mmとしているのだが、もし壁の内部を充填したらもっとかかるだろう。  お仕事では3Uをよく目にするけれど、自宅のテーブル上で1Uサイズを組み立ててみると、これはこれでかなりの大きさがあると感じる。 20年前にこの体積を埋めていた通信機や基板群はどんどん小さく、高性能になっていった。構造規格は変わらないけれど、いまや立方体形状は、観測機器のためのサイズや発生電力を考慮した2U以上の実用衛星の方向か、薄く重箱のようにスタックされたテレメトリセンサの方向への岐路にある。  回路部品実装と構造積層を同時に行って、構造と回路基板の境目を無くす方向も面白いかもしれないなぁ… と、実物大の構造を手に取って考えたりするのであった。

高速試作フレーム

 まとまった空き時間ができたので、プロトタイプ用のフレーム構造を製作していた。試作のお供、3Dプリンタの存在もあり、思いついたアイデアが間違っているかどうか、数十分待てば結果が分かる。  通信機を備えた遠隔システムのプロトタイプなので、HILSを構築するにしても、構造として統合したまま全機能の検証作業ができると良い。アプリケーションが決まっていれば、便利なSoCを使って基板一つに全機能を落とし込むのもたやすい時代だけれど、高性能なSoCやMEMSは大規模な需要のお零れなので供給期間は短く、依存性を下げて乗り換えやすくしておかないと小規模では割に合わない。 要求は以下のとおり。 ・供給期間は最低5年くらい ・素早くテストしたい ・コンポーネントをとりかえて検証したい  基板をスタックしていく構造で、基板サイズは5㎝角にする。 最近は10cm角の基板でも最低価格で製造できてしまうのでコストメリットは減少しているけれど、基板面積が限られているほうが基板一枚に載せる機能を限定できてよい。 OBC基板と基板カバー ターゲットとして5㎝角で設計した32MZ基板を選択  基板間の電気接続は、ピンヘッダをやめて構造依存性の少ないハーネス接続とした。  デメリットとしてはハーネス加工と圧着作業がはんだ付け同様、専用工具や練度を要する作業であることが挙げられる。   基板間の配線と圧着作業は少ないに越したことはないので、 デジタル接続による配線本数の削減や、クリンプ済みリード線のバルク買いなどを活用していく。 コンポーネント例 通信機基板 OBC基板と通信機基板を連結した例。組み合わせが決まっているのならば、基板間ピンヘッダによる接続で完全に固定するのもあり。 実験用バッテリホルダ キャパシタバンク 5V 150F 光学系と撮影テスト 始めの頃は、Arducamモジュールのテストベッドとしてフレームを作っていた。光学系の種類によっていくつか構造部材を設計し交換する。 特に望遠レンズを固定し、屋外でテスト撮影するときに役立った。 Arducam 5MP と ESP8266の組み合わせ。 ...