2020/03/05

UMPCもどきの製作3 構造のくみ上げ


UMPCもどきの2つ目の制作記事からまた半年が過ぎた。

 その間に、RaspberyPi4が国内入手できるようになっていた。が、電力設計などでまだ扱いづらいところがある。アイドル状態で結構温かくなるサードパーティーのヒートシンクを触っていると、専用のPMICが無いRaspiの弱点が目立ってきたように感じる。

 今回はBT接続の小型キーボードのデッドストック品の入手をきっかけとして、唐突にWaveShareのHDMI接続5.5インチOLEDモジュール(Raspi3用)のフレームを作成した。
 その流れを生かし、ハンドヘルド端末として骨組み構造をプロトタイプしてみた。

始まり

 中古で手に入れたキーボードはエレコムのTK-GMFBP029BKという製品。 日本語46キー配列。2012年にiPhone向けの英語配列モデルと同時に展開され、手持ちでライトなチャット入力用途とされていたもの。電源は単四電池x2なので経年劣化は無い。
 これが5.5インチOLEDディスプレイと横幅がぴったりだったので、フレームをつくってハンドヘルド端末を組み立ててみることにした。

 手持ちの5.5インチディスプレイそのものはHDMI接続、かつタッチ部はUSBなので接続対象を選ばないが、基板に直に組み付けられるのはRaspi3系統だけとなる。今確認すると、   Raspi4にも対応し、ケース付きになっている後発品も併売されている。
https://www.waveshare.com/product/displays/lcd-oled/lcd-oled-1/5.5inch-hdmi-amoled-with-case.htm

拡散されるとは思ってなかった写真

 フレーム側面にキーボードについていた展開式カバーを模擬した固定ヒンジを設けた。
フラットなキーボード端末を目指していたので、特に折り畳み機構は設けなかった。 バッテリ位置と基板の拡張性を考慮しなければ、PSIONのハンドヘルド端末ライクな形態もとれると思う。 

ディスプレイ部のフレームの横幅は144㎜で、幸運にもAdventurer3で出力できるぎりぎりの大きさだった。このサイズはベッドの僅かな傾きで四隅のうちのどこかの食いつきが悪くなり、一つの隅だけ剥がれて反り上がりが発生しやすい。そのため、1層目の品質を見ながら高さ調整を繰り返すことになった。
 このままでもいいけれど、バッテリを内蔵して持ち運びできるようにしたい。ということで、フレームにM3のジュラコンスペーサを立て、残りの筐体フレームを設計していった。
3回ほどリビジョンアップした後の形状

底部のフレームも何とか出力に成功。PETGなのでPLAよりは柔軟性がある


 最終的に、底部プレート+バッテリ上部のプレート、ディスプレーフレームの3層構造になった。キーボードは10Whのモバイルバッテリの上に乗っかる形で、自由に角度をつけられるようにした。

 筐体設計で考慮したのは、RaspberryPiの端子アクセスと拡張基板の搭載を邪魔しないこと、ばらばらに分解できること。バッテリへのアクセスも同様に解放されていること。入れ替えが効くよう、あくまでコンポーネントを一つにまとめているだけにとどめている。
手持ちした感覚は良好
造形が気に入っている英語圏の電子辞書とツーショット

 ひとまず形にすると、あれこれ改良点や機能追加が浮かんでくる。 すでに耐衝撃端末のようなバンパーをTPU素材でつくってみようとか、オリジナルキーボードをつけようとか、そういうことばかり考えている。ヒトはなぜハンドヘルド端末に心惹かれるのだろう…と、主語を無駄に大きくしながら、コモディティ化した市場とサイズ制限によるギリギリのスペックゆえに生まれる多様性の儚さに思いを馳せるのであった。

2020/02/10

スケーラブル植木鉢

 日々の開発の途中、息抜きで多肉植物のための自動照明植木鉢を作っている。単体で卓上栽培できる全自動化が目標だ。

動機

 多肉植物は、季節によって必要な日照量がかなり変化する。 また日本の多湿な気候ではかなりデリケートなものが多い。日照が少なければ徒長してしまうし、水の量を間違えても腐ってしまう。
 水はスケジュールに従い、むしろ水やりしすぎないようにすればいいけれど、日照管理は窓辺など場所が限られてしまう。 そもそも観賞したいのに、窓辺に遠ざけるのも悲しい。

 単純にLED灯で栽培する例はいろいろあって、多肉専用のおしゃれなLED照明(USB 5V給電)なども売っている。フレキシブルなLED灯を改造し、栽培灯の自作もしたけれど、手動で点灯管理する必要があり、一鉢しか育てられないため、株個体が増えてきた場合にその都度5V電源が必要になってしまう。 電源の問題はレイアウトの自由度に直結する。
システムのスケール問題を解決するには、初めから対応した設計が必要だ。
まずは、一株程度を植えられる容器を3Dプリンタで出力。個々のパーツをジュラコンスペーサで積み上げる方式。

コントローラは試作したAdafruit ItsyBitsy専用拡張基板を流用。単体で栽培時の環境モニタやリソース管理のために必要な拡張に対応している。
もともとデイジーチェーン方式のバス式接続規格の研究用にこしらえたので、この基板も多数の同規格の基板を連結することができる。システムとしては一つの通信バスでシーケンスを可視化し、異常なボードは電気的に切り離し、プログラムバスで一か所の接続点から全基板を書き換えできる。

 ItsyBitsyボードにはもともとNeopixel駆動専用のポートが用意されていて、DMAで点灯制御ができる。 ただし、今回は複雑なパターンを点滅させるわけではない。色温度調節、輝度調整、点灯、消灯制御がメインだ。
 スイッチも要らず、コントローラ一つでポットの数だけ照明をデイジーチェーンすることができる。スケーラブルなポットとして必要な要素だ。



 サンプルを実行した結果ゲーミングPCのように虹色に輝く多肉植物というサイケデリックなものが出現してしまった。直ちに単なる照明としてのコードに替える。
 16個のリングを輝度最大にすると500mAも引っ張る。ユニットが増えてくると、5V電源の容量、電源配線の許容値も検討しないといけない。
 幸い、半分以下の電流による輝度でも3㎝先で5000ルクスを確保できた。 徒長対策には十分な明るさがある。
 せっかく細かく調節できるので、時間に応じて色温度を変化させたり、輝度を調節して自然の日照を模擬するところまで実装してみたい。

2020/01/28

ISS軌道を撮る

天頂を通過するISS 380km分の航跡が写っている

 国際宇宙ステーション(ISS) の可視パスを撮り始めた。
 仰角が80°を超える好条件では、天頂付近でマイナス4等星近くまで明るくなる。

人々の暮らしの頭上を人類の宇宙基地が音もなく渡っていく。 第一宇宙速度で移動しているにもかかわらず、400㎞も離れると見かけの移動速度は航空機に近い。

参考:ISSの可視パスを出してくれる便利なサイト https://www.heavens-above.com
可視パスでフィルタをかけ、予報の中で仰角が50度を超える好条件な日を狙うと良い。

 三脚に設置したカメラでこの軌跡を撮るにはいくつか方法があるけれど、お手軽なコンポジット撮影を試みた。
 Nikon1 J5に1 Nikkor 6.7-13mmを付けて待ち構える。



この機種ではインターバルは最短で5秒、インターバルが遅延しない最大の露出時間は2.5秒となる。 換算18mmだと地平線から天頂までを映せるので、到来方向の空にカメラを向け固定し、撮影してみた。

撮影後は比較明合成をして完成。

11月21日
 最初の撮影は光害カットフィルタ(kenko スターリーナイト)のみでの撮影。急いだためピント出しに失敗したが、明るい点光源が強調され、ソフトフィルターと同じ効果をもたらした。拡大しなければ問題ない


1月21日
 プロソフトンAを入手したのでピントを出してから撮影。時刻的にはほぼ同一なのに、季節変化で空が明るくなっているのが分かる。


2回のパスを比較すると以下のようになる(Orbitronを使い、当時の軌道元期で比較)。 1月のパス軌跡がかなりまっすぐ。

軌道の途中から赤い線になるのは、地球の影に入ったということ。 この日は天頂通過後に日陰に突入した。 直前、ISSの反射光が夕焼け色に赤く変わり、あっという間に消えていった。低軌道衛星の夕焼けは短い。


 合成した画像の個々の破線は、2.5秒間にISSが移動した距離も表している。軌道速度は秒速7.66kmだから、露光する間にISSは約19㎞移動している。

 眼で追う場合、地平線近くで識別するのは至難の業だ。都市部なので、仰角が40度を超え、輝度がマイナス等級に達するあたりから周囲の星よりも目立ちはじめて気が付きはじめる。

1月のパスで破線を数えてみると、地平線近くは太陽光の名残りで明るく識別できないが、45個の破線を確認できた。天頂まで写したコンポジット画像には差し渡し1723kmの軌道が写っていることになる。

 この日も肉眼ではっきりと視認できたのは、ISSの仰角が金星を超え、距離が800㎞を切ったあたりからだった。

おまけ ISSの軌道高度変化(5年分)



ここ5年間の軌道要素から高度変化を算出して見てみると、高度410㎞前後に維持されている。