2019/07/20

UMPCもどきの製作2( 5.5inch AMOLEDディスプレイ)


前の記事からだいぶ時間が経ってしまった。
時間は常にDIYに味方する。画面の検討を再開すると、WAVESHAREからいくつか新しいディスプレイが登場していた。
https://www.waveshare.com/product/5.5inch-hdmi-amoled.htm

この5.5inch AMOLEDディスプレイをAliexpress経由で購入してみたので、筐体の設計のために仕様を確認してみる。

 新型は従来と比べ、タッチスクリーンが静電容量式になり、USB接続になって汎用的な利用が可能になっていた。
従来と比べて操作性や画面品質は圧倒的に良くなっている。


付属品はRaspberryPi固定用のスペーサ、Raspi用HDMI,USB端子、そして短いHDMIケーブルとmicroUSBケーブル。
 汎用的なマシンにつなぐ場合でも困ることはなさそうだ。

有機ELパネルなので、画面焼けを防ぐためにスクリーンセーバー設定やディスプレイ点灯時間の制限などを忘れないようにしよう。

Raspberry pi3を搭載する




このモニタはmodel Bの基板に合わせてHDMIコネクタやUSBコネクタのアダプタが用意されている。以前のモデルと違って裏返に固定するのでGPIOは丸ごとアクセス可能だ。
 注意点としては、拡張基板を固定しようとして、なべ小ねじの代わりにスペーサを立てようとすると、真下のスペーサ高が4mmしかない関係でネジ穴が浅いこと。

 ディスプレイは解像度を変更すると画面表示できないケースが多いので、FullHD固定のまま、RaspiConfig でピクセルダブリングを選択することで解決した。 (メニューサイズはMiddle)
実質960x540になってしまうけど、それほど不便ではない。
スクリーンキーボードを導入してみる。 Onboardというアプリをインストールして常駐させるとほぼスマートフォンと同じ文字入力環境が実現できる。


 静電量量タッチパネルであれば文字入力もそれほどストレスが無い。プロジェクトを寝かせていた2年の間に、UMPCを消滅させたUIが部品としてDIY世界に降りてきていた。
 ディスプレイの高機能化は好都合でもある、ポインティングデバイスを省略出来るのはキーボードの単純化につながって良いことだ。

電力


Raspberry pi3B を繋いだ場合、USBテスターの読み出し値はアイドル時で0.6A (約3.2W)負荷が上がると4~5W (Youtubeを全画面で再生しているときに平均4.5W)
となった。 vcgencmdでCPU温度を見るとスロットリングが発生していそうなので、冷却ファンを追加してみたが、電力消費に大きな差はなかった。

 
 スマートフォンのOSと比べると、Octaneのパフォーマンス差は結構大きいけれど、初期の2コアATOMを搭載したネットブックと比べたら似たようなスコアにはなっている。

 公称10000mAh(36Wh)のモバイルバッテリなら、アイドル時でフル稼働で7~8時間動かせそうだ。

2019/05/18

大きめの構造をプリントする


 Adventurer3を導入して4か月が経ち、5月に入ってからPETGフィラメントを使っている。PLAと似て匂いは無く、やや柔軟性があって加工しやすい。

 テーブルの傾き
テーブルが手前から見て右奥に向かって斜めに傾いており、特にPETGになると右奥の1層目が定着せずはがれるようになった。右奥まで使う広い造形だと、はがれて定着に失敗する。
 右奥のプレートの下にアルミテープを斜めに張り付けて、奥に向かっての傾きを調節すると、PETGで10x10㎝を超える板状の造形も成功するようになった。
傾きなどは一度補正できてしまえばその後はしばらく無調整で使える。数値的に調整したいので、ダイヤルゲージを買って水平出しをしようと思う。

 PETGのパラメーター調整も済んだので、150mm^3のプリントエリアを生かせる構造物として、CubeSatの1U規格構造のモックアップをモデリングしてみた。 家庭用の3Dプリンタには1Uサイズがちょうどよい。





 分解して持ち運べるように、M3の六角ナットをはめ込み、各面のパネルを皿ねじで固定する組み立て式にした。Z面(上下)には前回の記事で作成した5㎝角基板用フレームを固定できる。

 印刷時間は、メインのY+レール面が3時間半、X面が1時間半、Z面蓋が3時間 3種6面でだいたい16時間かかった。 最小板厚を2mmとしているのだが、もし壁の内部を充填したらもっとかかるだろう。

 お仕事では3Uをよく目にするけれど、自宅のテーブル上で1Uサイズを組み立ててみると、これはこれでかなりの大きさがあると感じる。 20年前にこの体積を埋めていた通信機や基板群はどんどん小さく、高性能になっていった。構造規格は変わらないけれど、いまや立方体形状は、観測機器のためのサイズや発生電力を考慮した2U以上の実用衛星の方向か、薄く重箱のようにスタックされたテレメトリセンサの方向への岐路にある。

 回路部品実装と構造積層を同時に行って、構造と回路基板の境目を無くす方向も面白いかもしれないなぁ… と、実物大の構造を手に取って考えたりするのであった。

2019/05/07

高速試作フレーム



 まとまった空き時間ができたので、プロトタイプ用のフレーム構造を製作していた。試作のお供、3Dプリンタの存在もあり、思いついたアイデアが間違っているかどうか、数十分待てば結果が分かる。


 通信機を備えた遠隔システムのプロトタイプなので、HILSを構築するにしても、構造として統合したまま全機能の検証作業ができると良い。アプリケーションが決まっていれば、便利なSoCを使って基板一つに全機能を落とし込むのもたやすい時代だけれど、高性能なSoCやMEMSは大規模な需要のお零れなので供給期間は短く、依存性を下げて乗り換えやすくしておかないと小規模では割に合わない。

要求は以下のとおり。
・供給期間は最低5年くらい
・素早くテストしたい
・コンポーネントをとりかえて検証したい

 基板をスタックしていく構造で、基板サイズは5㎝角にする。 最近は10cm角の基板でも最低価格で製造できてしまうのでコストメリットは減少しているけれど、基板面積が限られているほうが基板一枚に載せる機能を限定できてよい。

OBC基板と基板カバー

ターゲットとして5㎝角で設計した32MZ基板を選択



 基板間の電気接続は、ピンヘッダをやめて構造依存性の少ないハーネス接続とした。
 デメリットとしてはハーネス加工と圧着作業がはんだ付け同様、専用工具や練度を要する作業であることが挙げられる。
  基板間の配線と圧着作業は少ないに越したことはないので、 デジタル接続による配線本数の削減や、クリンプ済みリード線のバルク買いなどを活用していく。

コンポーネント例
通信機基板
OBC基板と通信機基板を連結した例。組み合わせが決まっているのならば、基板間ピンヘッダによる接続で完全に固定するのもあり。
実験用バッテリホルダ
キャパシタバンク 5V 150F


光学系と撮影テスト

始めの頃は、Arducamモジュールのテストベッドとしてフレームを作っていた。光学系の種類によっていくつか構造部材を設計し交換する。 特に望遠レンズを固定し、屋外でテスト撮影するときに役立った。
Arducam 5MP と ESP8266の組み合わせ。 WLAN接続は不安定だったのでUART経由でキャプチャした


広角レンズ接続例。 ArduCamはお手軽に5MPを撮像できてすごい

超望遠テスト撮影



望遠レンズはSpacecomの産業用望遠Cマウントレンズ(G6x16-1.9 Macro-L 43~270mm)と、中古で見つけたKenkoのミラーレンズ(400mm F8)を用意。ミラーレンズは各社カメラマウントの下にTマウントネジが切ってあるので、Cマウント-Tマウントアダプタを接続している。

OV5642のイメージサイズだと35mm換算のだいたい10倍になるので、270mmは2700mm相当に、ミラーレンズはこのサイズで4000mmというお化けになる。当然ながら要求分解能にたいして光学系の解像度が足りず、拡大しすぎてタブレットでプレビュー画像を見ながらでも何を映しているのか、ピントが合っているのかを確認することすら困難を極めた。微動雲台が無かったらまともに撮影できなかっただろう。
270mmで撮影した富士山。レンズ上のゴミが写り込んでいる。IRカットフィルター無しなので鮮明
ミラーレンズで撮影した4000換算の富士山山頂付近 視野内の明暗差で周囲が変色気味

同時にNikon1でミラーレンズと専用の300mm望遠レンズを比べた比較画像を用意した。 値段の差がそのまま表れているという当たり前の結果になった。