スキップしてメイン コンテンツに移動

Raspberry Pi High Quality Cameraを試す



 ソニー製の1/2.3型 12Mピクセルのセンサモジュール(High Quality Camera)がPi Cameraのラインナップに加わった。
 
 個人的に手持ちの産業用ズームレンズを評価するのにちょうどよさそうなので入手してみた。 背景としてはCマウントレンズがガラクタ箱の中でなぜか増殖しており、我に返ってみれば、Cマウントレンズ沼の中に膝まで浸かっているのだった。

 1/2.3型といえばハイエンドスマートフォンでもおなじみのフォーマットだけれど、フルサイズ比で倍率は約5.6倍となる。同じ画を撮るための焦点距離が短くて済む利点がある。OlympusのTGシリーズや、Nikonの超望遠コンデジなど尖った製品も多い。
 カメラとして、このクラスのセンサでレンズ遊びをするなら、中古市場でPentax Qシリーズを手に入れて、各種マウントアダプタを漁るほうが満足度は高いかもしれない。 

 センサ基板はしっかりした金属製マウントに取り付けられている。三脚穴もついておりテストしやすい。バックフォーカス調節リングが取り付けられており、Cマウントレンズ毎にバラついている無限遠点を微調整して合わせることができる。単焦点レンズでは不要なこともあるけれど、特にズーム機構を持つレンズではフォーカスリングの表示と一致させる調整が必須となり、マウントだけでもかなりの価値がある。
バックフォーカス調節リングは、マウント上のマイナスネジを緩めて、すこしテンションが無いと動き始めないので注意。

 IRカットフィルタもついているが、これはユーザーが取り外すこともできるようになっている。ただし外すと保証は受けられないようだ。


 基板とマウントは低粘着シートを介して封止してあり、光と埃等の侵入を防いでいる。
基板とマウントのネジはシリコーンスペーサだけで固定されているため、レンズの荷重を基板側のネジ穴で支える構造はやめたほうがよい。

カメラシステムの作成

 個人的には屋外のRaspi地上局に接続して、星空を連続撮影する全天撮影カメラにしてみたいが、まずは使い勝手の良い実験用システムの構築が必要だ。
 今回は手持ちのPi zero Wをベースに、ワンチップLinux時代のネットワークカメラとして使い勝手を考えてみた。 3Dプリンタでフレーム部品を印刷し、ジュラコンスペーサを継いで組み上げる。一年前にも、まったく同じようなことをやっていた


 底面5センチ角の直方体として、Pi zeroを入れたケースを中央と後部の底面板にはめる形で固定する。これでUSBケーブルで給電するだけで、Wifi経由で操作できる軽量なレンズ交換式カメラモジュールとなった。空いた空間にモバイルバッテリを固定すれば、完全なワイヤレス動作が可能。

ただし、基板にフレームを固定しているのであまり重たいものは載せられない。

 試しにPi zeroW上で WebRTC Native Client Momo を動作させながらテスト撮影をしてみた。この構成だと消費電力は 1.5Wほどで済む。 
 RaspistillではHQにおいて200秒以上の露出時間が取れるとされる。ただし、AWBとAGCが有効だと数フレーム撮影する必要があってやたらと時間がかかってしまうので、AWBとAGCを無効化してから撮影するように書いてある。

産業用レンズによる画像作例  

冒頭の写真は、Cマウントのレンズとして、中古で入手していたSpacecom社の手動ズーム・フォーカスレンズ(16~100㎜)を取り付けたもの。
 1インチセンサ機用のレンズだが、1/2.3型センサを取り付けて、35㎜換算するとだいたい128~800㎜のズームレンズとなる。金属製でずっしりとした重さがある。
 絞り解放は明るいけれど、代わりに焦点出しにものすごい苦労する。 ズームレンズがF5.6になる理由が分かってくる。このレンズの真価は、望遠端でレンズ前1mにピントが合うこと。FA向けだけあって、超望遠マクロとして、ワーキングディスタンスを確保しながら拡大撮影する用途にも使える。
 
  1mの距離から撮影したもの。
マクロで基板写真を撮ったもの。
遠くの基地局アンテナ


簡易HDMIカメラとして

RaspberryPiのHDMI出力を、最近数千円ほどで安価に出回っているUSB接続のHDMIキャプチャにつなぐことで、モニタを直接用意せずにFullHDのUSBカメラとして運用することもできる。 このドングルはUVCデバイスとして認識されるため、特別なドライバ等は必要ないのが利点。



Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察してみると、プログラマ・USBCDCとしてATSAMD21が搭載されている(中央の四角いQFNパッケージ)MCU的にはnEDBG

【サボテン】太陽電池の結線

 久しぶりにサボテン計画。 忙しかったり投薬治療直前でだるかったりして、かなり放置していた。 さぼてんも不機嫌そうだ。 せっかくなので、園芸用の水受けに移す。  関節痛で寝込んでる間に、エイプリルフール終わってましたね^^・・・。  太陽電池の展開機構を想像したが、まずは太陽電池の結線を済ませよう。  配線を綺麗にまとめたくていろいろ探していたら、千石電商でぴったりなものを見つけた。 LEDリング基板 というらしい http://www.led-paradise.com/product/629?  本来はチップLEDをリング状にまとめる代物。 イレギュラーな使い道だ。   今度は小径のを買って、GX200のリングライトに仕立て上げよう。   嬉しいことにフレーム径にジャストフィット。 配線を綺麗にまとめられた。   太陽電池の接続部。逆流防止用にショットキーダイオードを入れている。 かなりスッキリ。 蛍光灯下 500ルクスでの実験。 EDLCは10Fを使用。  ちゃんと充電が行われている。 といっても、とてもとてもゆっくりとだけれど・・・。

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch ・内蔵VREF電圧が5種類と多い(0.55V,1.1V,1.5V.2.5V.4.3V

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア