スキップしてメイン コンテンツに移動

1画素ドットカメラの実装

カラーセンサで実現したかったのは、1画素カメラ。 カラーピッカーとかスポイトのリアル世界版。
エリアでもなく、ラインでもない、ドットカメラ。

これで地球を観測したら、なにか有意義なデータとなるんだろうか。 理学系の人とかに聞いてみたいな。 個人的には青空の青さと、夕焼けの色を取得したいというモチベーションで載せている。

レンズ部:S9706、奥:NaPiCa

ハードウェア


ストラップ衛星に搭載したものを動かし、データを評価してみた。
秋月電子の取り扱うS9706はカラーフィルタ付きなので、赤外線の補正などはそれほど気にしなくて良いらしい。 ネットで見る応用例はロボットのボール認識、メディアアートなどの検討例が多い。 

こちらは大雑把な空間の色を取得したいので、センサ面にはジャンクUSBカメラから取り外したフィルタ無しのレンズをシリコン充填剤で貼りつけている。

センサの消費電流は最大10mA程度とのことなので、AVRのピンから直接供給している。
これで測光時以外は電源を落とせる。

露光時間とAE

S9706はゲート操作の時間で露光時間が調節できるので、環境光に応じたAEができるといいかもしれない。出力される12ビット値から、レンジの最大値に張り付いたり、最小値に近づいたりしたら露光時間を変えるという手が簡単そう。 

AE制御をすると、色検出の精度は良くなるけど、定点で明るさを含めた時間変化を記録したい場合は、パラメーターを固定したほうがいいこともある。 快晴の青空が検出できる値に固定して、日没までの2時間、露出時間100ms固定で取得したデータはこんな感じになった。

日没2時間のセンサデータ変化(約1fps 100ms露光、高感度モード)

グラフ色はRGBと対応させてある。各12ビットなので、普通のカメラに比べると表現が豊かということになる・・・
赤と緑の成分はほぼ同じカーブで、青の波長だけが飛び出しているのがわかる。この時の空は快晴だったが、靄のせいで若干白っぽくなっていた。 モニタ上でRGBを合成してみると、白っぽい青になるので大体あってそう。 空の青さを測ることで、大気の透明度がわかるかもしれないな・・・ 
動作テストを兼ねて数日分のデータを取ってみたい。

夕焼けの影響が出るかとおもいきや、太陽光を直接視野に入れていなかったので、それほど影響は現れなかった。  

照度センサ

明るさを測るセンサは専用のものを用意してみた。
フォトダイオードNaPiCaAMS302でルクス計測を行う。 
AVRはリファレンス電圧1.1Vなので、ダイナミックレンジをどうするか思案中。



キャパシタ電源とXBeeを追加したら2倍の大きさに。

モノ

カラーセンサ: S9706 http://akizukidenshi.com/catalog/g/gI-02493/

回路とサンプルソース 建築工作発明ゼミ2008
http://kousaku-kousaku.blogspot.com/2008/11/arduinos9706.html


フォトダイオード S9648 http://akizukidenshi.com/catalog/g/gI-02426/

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察してみると、プログラマ・USBCDCとしてATSAMD21が搭載されている(中央の四角いQFNパッケージ)MCU的にはnEDBG

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch ・内蔵VREF電圧が5種類と多い(0.55V,1.1V,1.5V.2.5V.4.3V

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア

人工衛星の住む軌道 (とKSP)

相乗り衛星の軌道を、Kerbal Space Programで再現してみた。 現実の軌道をいくつかシミュレートしてみる。  衛星の行き先は、わりと限られた範囲に集中している。 低軌道(300~400km)  CubeSat級の衛星にはHotな軌道。 わずかに存在する気体分子や電離した原子が抵抗となるため、半年ほどで大気圏に再突入してしまうが、それゆえデブリ化の危険がほとんどない。 断面積と重量により、軌道寿命の差が極端にひらく。 基本的には地球の影に定期的はいることもあり、電力収支、熱環境共に厳しい。  投入手段: ISSからの放出、低軌道観測衛星への相乗り。 最近はISSに直接装置を設置する例も増えてきた。 極軌道(太陽同期軌道)(600~1000km)   観測衛星の天国。 軌道傾斜角が赤道と直行するような軌道。 特に太陽同期軌道では数日~数週毎に同じ地点の上空を通過するため、地表をまんべんなく安定した条件で観察できる。  太陽と軌道円の角度によっては、数週間~数ヶ月は日照状態が続くので電力不足に陥りにくい。  初期のCubeSatをはじめ、数十キロ級のマイクロサットなどが数多く投入され、今も投入されている軌道。  ただし、軌道が高くなるにつれ軌道寿命が延びることになる。 多くの衛星が周回していることもあり、長い軌道寿命の中で、交差、衝突する可能性が無視できなくなりつつある。 現在ではデブリ化を防ぐための取り組みがはじまっている。 参考文献: http://www.spacenews.com/article/civil-space/4207665th-international-astronautical-congress-cubesat-revolution-spotty 楕円軌道(数百~数千km)  宇宙開発初期のロケットで多かった軌道。 モルニア軌道を除くと利用例は少ない。静止軌道へ投入される主衛星との相乗りで、トランスファ軌道で放出されるものは存在していた。  投入例としては、アマチュア衛星( Phase-3シリーズ )がある。 かつては数基のアマチュア衛星で、地球をカバーして通信しようという計画があった。  近地点が数百kmだと、ヴァン・アレン帯を毎回横切ることになり、荷電粒子によって電子機器や太陽