スキップしてメイン コンテンツに移動

タフパッド


過去の機種ということで、1万円代で購入できたPanasonicの防塵耐衝撃タブレット JT-B1

AndroidのバージョンはICS(4.04)だが、業務用のためか、細かい修正パッチは最近まで適用され続けている。  発売当時のOSのままということもあり、レスポンスは良いが、時の流れはごまかせないので、特定のアプリのみを動かすということに割り切る必要はある。 ちょうど、初代Nexus7に背面カメラをつけたようなスペックだ。一応、RTL- SDR関連は動いた。


 防塵耐衝撃ということで、大きいこと(8型タブレットを2枚重ねたくらい)、 重い(500g級)ことは覚悟していた。 あえて利点を挙げるとすれば、厚みがありベセルが広いので保持しやすいところ。 そして物理的に強そうな見た目。

また、電源コネクタとmicroUSB端子が別に用意されている。 さすが業務用だった。

一つ困ったのが、待機中の電池の消耗スピードが早いこと。
最小限のアプリとバックグラウンドサービスにとどめても、1.4%/hのレートで放電があるようだ。
単純計算だと、待受状態で3日もたない。 無線関係をオフにしても、その傾向は変わらなかった。
この原因は後ほど判明する。

お約束の分解。

固定にはすべてY型のネジが使われているので、Y型ネジ用のドライバーを取り寄せた。


背面中央部にある蓋のネジを取り外すと、取り付けられたWWANモジュール(Gobi 4000系)が確認できる。 空間の余裕があるからか、WWAN対応PCと同じような構成だ。
LTEモジュールにアクセスするなら、この4つのネジを外すだけよかった。

次に、本体を開ける。 筐体のつなぎ目はゴムパッキンが取り巻いている。
メイン基板はすっきりしていて、主要パッケージはシールドケースに収まっており、マグネシウム筐体に伝熱シートで押し付けてある。 徹底的な放熱パスの作成がなされている。

GPS、Wifi,BT,WAN関連のアンテナはフィルム基板に形成され、Pogoピンで基板から接続されるタイプ。 アクセサリーポートの上側と、画面側の右上、NFCの読み取り位置の付近に設けられている。 この2箇所は何かで覆わないようにしたほうがよさそう。 

GPSの感度だが、アプリで表示する限り、Nexus7に比べて測位時に使われる衛星数が半分くらいになってしまうのが惜しい。

待機電力の調査

OSが古いので、OSのブラウザは封印、Chromeのみにして、使わないGoogle系のサービスも封印。
バックグラウンド更新等を切り、常駐アプリを減らした。

結果からいくと、WAANモジュール取り外して起動、放置すると、待機中のバッテリの放電レートが10分の1にまで下がった。 もともと5Ah級のバッテリを装着しているので、待機電流さえ減れば、おそろしく長持ちしそう。


上の画像は、WifiをOnの状態で、1日目まではWWANなし。 その後、12時間は、SIMなしの区間で、最後の12時間がデータSIMありの待機電力となる。 LTEモジュールが刺さっていると、モバイルデータ通信を切っていても、待機時間は約3日くらいになる。 取り外せば、1ヶ月くらいはもちそう。 (すべてのアプリを切った状態)

たまに使う普通のタブレットとしては、数日目を離した隙に使用不能になっているのはやや不便で、
充電台/給電ケーブルに繋ぎっぱなしが可能な業務利用とはちょっと評価軸が変わる。
LTE環境が必要なときだけ、モジュールを刺して使おう・・・。


TH-D72をあらたに自局へ登録したので、APRSのテストのため、近所の山へお出かけしたときの構成。
APRSの連携もアプリが幾つかあるが、まだ試せていない。 
かたやパケット通信そのものを楽しむものと、当たり前のようにどこかの基地局と通信をしているものを運用していると、よくわからない心境になる。
APRSのほうは、UHFの5Wで100kmほど先のI-Gateに拾われることがわかった。宇宙機相手だと1Wくらいの出力で、数百kmレンジの空間を拾うことになる。 ハンディ機だと自分が衛星の立場みたいで面白い。 (ハンディ機を組み込んだ衛星も結構運用されていた)
目標としては、ISSのデジピータにアクセスするところまでやってみたい。

Popular posts

【サボテン】太陽電池の結線

 久しぶりにサボテン計画。 忙しかったり投薬治療直前でだるかったりして、かなり放置していた。 さぼてんも不機嫌そうだ。 せっかくなので、園芸用の水受けに移す。  関節痛で寝込んでる間に、エイプリルフール終わってましたね^^・・・。  太陽電池の展開機構を想像したが、まずは太陽電池の結線を済ませよう。  配線を綺麗にまとめたくていろいろ探していたら、千石電商でぴったりなものを見つけた。 LEDリング基板 というらしい http://www.led-paradise.com/product/629?  本来はチップLEDをリング状にまとめる代物。 イレギュラーな使い道だ。   今度は小径のを買って、GX200のリングライトに仕立て上げよう。   嬉しいことにフレーム径にジャストフィット。 配線を綺麗にまとめられた。   太陽電池の接続部。逆流防止用にショットキーダイオードを入れている。 かなりスッキリ。 蛍光灯下 500ルクスでの実験。 EDLCは10Fを使用。  ちゃんと充電が行われている。 といっても、とてもとてもゆっくりとだけれど・・・。

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察...

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch...

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア...