スキップしてメイン コンテンツに移動

屋外受信局の設備更新



 屋外にRaspberrypi2を設置してから、もう4年が経過していた。そんなに負荷をかけてないからか、SSHで定期的にメンテしていたけどSDカード不良になることもなくSDR鯖として動いてくれた。
 いままでの屋外BOXは入れ物の選択、構造、気象対策については問題なかったといえるけれど、小さくてコネクタも増設できず、ちょこっと試したい装置を取り付けるにしても取り回しが悪かった。なので今回は箱を大型化し、不満点の解消に努めた。

  • 設置性やコネクタ回りのハンドリングを改善
  • イーサネットHUBを設置
  • 外部装置への電源分配機能
  • 余ったスペースにボードコンピュータを設置

ボックス回り

AC100Vラインは屋外用の防水延長ケーブルをそのまま箱に導くので、延長コードの先が防水容器になった形。
 コンセント部はキャップ構造になっており、やや小さい外形でボックスに穴加工すれば、押し込むことで容易には引っこ抜けない構造になる。
 内部のACタップの配線を固定したあとで、ボックスとコンセント部の隙間はシリコンコーキングで充填する。

タカチのBOXは内部のベースプレートも一緒に購入して、ここに穴をあけてタイラップで様々な部品を固定することにする。
 内部の部品、ケーブルの設置基準は、簡単にベースプレートを取り外せること。(防水性にかかわる部品を除く)

縦置きとなるので、ケーブルは直下から取り出す。
 下部のどこかにベントホールを設けておく。 完全密閉状態だとプラケースということもあり、一度侵入した湿気が逃げられず、気温変化の激しい日に内部が結露して故障する。
 穴の場所は重力で水が抜けるような位置かつ、暴風雨で雨水が逆流しないような構造が良い。 ベースプレートの裏側などはおすすめ。設置場所によっては虫などの侵入を許すこともあり気を遣う。

足は屋外用マグネットベースにしたので、仮置きでもある程度固定できるようになった。

 電源回り

 ACアダプタまでは既製品の組み合わせで固めた。内部は短い延長コードと、USB電源付きの小型コンセントタップを設置。
 限られた容積を有効活用できるような配置にする。



 コンセントタップの5V電源は小型イーサネットハブとRaspiに供給する。24Vは外部用電源として疑似PoE基板につなぐ。
 屋外設置で真っ先にダメになりやすいのは電源部だったので、交換しやすくしておくことが重要。

 ネットワーク回り

単純に今まで屋外に這わせていたLANケーブルを接続し、内蔵したハブ経由で分配するようにした。ハブは5Vで動作するモバイル用のものを選定。発熱や電磁波放射は抑えたいので100Mbpsで妥協している。

ケーブル回り

 ちゃんとした防水コネクタもあるけれど、ペアで1ポート1万円程度はする。ケーブル側も径や防水性能について細かな確認検討が必要なのでちょっと手に余る。
 高級コネクタであってもなくても、設置場所を考えてなくて他所から水が伝わって腐食する事例、自己融着テープの巻き方ひとつで水の侵入を許してしまったりする事例がある。自然との闘いは知識と想像力、設計における継続的なトライ&エラーになる。

 今回は取り回しやすさ優先で行くので、ケーブル内外は短いLANケーブルを作成し、ケーブルグランドで防水処置とする。外に出たコネクタは、接続先のケーブルと中継アダプタで接続し、その後自己収縮チューブなどで防水処理する。 IP監視カメラの施工でよく使われる方式。
 今回はケーブルが通る程度の太さのケーブルグランドを使うので、通したあとでコネクタをカシメる必要がある。 取り回しや仕上がりを気にしないなら、コネクタごと通る大きめの穴を開け、防水粘土で埋めるほうが楽かもしれない。

 Raspi回り

防湿処理風景

今回はRaspi3Aを選択。 3Bでもよいのだが、あえてUSBハブにすることでUSB端子のレイアウトに自由度が増す。 基板の取り付け方向と垂直にコネクタを出す基板を作ろうかな…。
 Raspi2には発熱が少ないという利点があった。3は外気温15℃でCPU温度が35℃台と普段から高め。ギリギリ許容範囲だろうけれど、4は待機電流が大きすぎるのでヒートシンクと強制空冷が必須になるだろう。
 発熱は悪いことばかりではない。3月末に着雪があり、ちょっとした降雪試験になった。特に問題は起きなかったけれど、降雪中のCPU温度は20℃以下に下がっていた。
 着雪はある程度熱源があればすぐ落雪するので、積もった雪が凍って箱にダメージとなるのをある程度防いでくれる。


固定部を作り直した クロスダイポール

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察してみると、プログラマ・USBCDCとしてATSAMD21が搭載されている(中央の四角いQFNパッケージ)MCU的にはnEDBG

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch ・内蔵VREF電圧が5種類と多い(0.55V,1.1V,1.5V.2.5V.4.3V

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア

人工衛星の住む軌道 (とKSP)

相乗り衛星の軌道を、Kerbal Space Programで再現してみた。 現実の軌道をいくつかシミュレートしてみる。  衛星の行き先は、わりと限られた範囲に集中している。 低軌道(300~400km)  CubeSat級の衛星にはHotな軌道。 わずかに存在する気体分子や電離した原子が抵抗となるため、半年ほどで大気圏に再突入してしまうが、それゆえデブリ化の危険がほとんどない。 断面積と重量により、軌道寿命の差が極端にひらく。 基本的には地球の影に定期的はいることもあり、電力収支、熱環境共に厳しい。  投入手段: ISSからの放出、低軌道観測衛星への相乗り。 最近はISSに直接装置を設置する例も増えてきた。 極軌道(太陽同期軌道)(600~1000km)   観測衛星の天国。 軌道傾斜角が赤道と直行するような軌道。 特に太陽同期軌道では数日~数週毎に同じ地点の上空を通過するため、地表をまんべんなく安定した条件で観察できる。  太陽と軌道円の角度によっては、数週間~数ヶ月は日照状態が続くので電力不足に陥りにくい。  初期のCubeSatをはじめ、数十キロ級のマイクロサットなどが数多く投入され、今も投入されている軌道。  ただし、軌道が高くなるにつれ軌道寿命が延びることになる。 多くの衛星が周回していることもあり、長い軌道寿命の中で、交差、衝突する可能性が無視できなくなりつつある。 現在ではデブリ化を防ぐための取り組みがはじまっている。 参考文献: http://www.spacenews.com/article/civil-space/4207665th-international-astronautical-congress-cubesat-revolution-spotty 楕円軌道(数百~数千km)  宇宙開発初期のロケットで多かった軌道。 モルニア軌道を除くと利用例は少ない。静止軌道へ投入される主衛星との相乗りで、トランスファ軌道で放出されるものは存在していた。  投入例としては、アマチュア衛星( Phase-3シリーズ )がある。 かつては数基のアマチュア衛星で、地球をカバーして通信しようという計画があった。  近地点が数百kmだと、ヴァン・アレン帯を毎回横切ることになり、荷電粒子によって電子機器や太陽