スキップしてメイン コンテンツに移動

車載冷凍庫で簡易低温環境試験

 作ったものを投入してスイッチを入れると、温度に関連する不具合が観察できる不思議な箱を作ってみた。

 一品物の装置の動作確認をするとき、極端な温度環境下の挙動を調べておくことで防げるトラブルは結構多い。それは半田の品質だったり、受動部品の定数だったり、ハードウェア設定に起因するソフトウェアの挙動だったりする。とある案件で、外部から提供されたファームウェアがバージョンによって全く違う温度挙動を示したのにはだいぶ苦しめられた。
急冷スプレーでも確認はできるけど、再現性のある試験には使いにくい。

 本格的なサイクル試験は環境試験装置の出番なので、以下の確認だけを目的とする。
 コールドスタート試験、不良個体のスクリーニング。
 温度センサの動作確認。
 クロック回りの回路の定数調整
 低温におけるプロセッサの内蔵OSC周波数などの観察

 DIY的な手法でいろいろ検討した結果、低価格でマイナス10度以下の環境を作ることに絞ると車載冷凍庫というカテゴリが残った。
 ペルチェ方式は冷却効率が悪いため除外した。

車載冷凍庫の選定

 現在入手できる低価格な車載冷凍庫のスペックはおおむねマイナス20度までの冷却能力、1℃刻みの操作パネルという共通点がある。コンプレッサー式なので小型とはいえA3対応の大型プリンタ程度の場所を占有する。加温機能が付くと値段が数倍になるので、熱サイクルが必要ならなんらかの熱源を後から設置することにする。

 なおこの手の製品、Bluetooth対応とは書いてないけれど、海外で調べるとアプリ対応を謳っており、その名残りでBLEビーコンが検出できることがある。念のためBluetoothモジュールは基板から除去しておいた。

 小さめの圧力鍋なら余裕で入るので、簡易熱真空試験装置にも転用できそう。


 動作音はとても静かだが、冷却中はコンプレッサの振動があるため、設置場所によってはゴム足などをつけて防振したほうが良い。
 12V系ということもあり、普通にオフグリッド生活で重宝しそう。 最近マキタから、似たような冷却能力でバッテリ駆動もできるパーフェクト製品が出てきた。

USB配線を引き込む

まず軽く試運転するために、USBポートを庫内に引き込んだ。 延長ケーブルの中間は銅箔テープとし、蓋が閉まるようにした。 この冷凍庫は周囲の壁に冷却パイプがぐるぐる巻いてあり、壁面に触れているものは庫内温度よりも冷やされることになる。 結露対策として、銅箔テープの上からカプトンテープを張り付ける。 

                             


試運転
 とりあえず制御回路には手を加えず、試験を行ってみた。
庫内には乾燥剤(電子乾燥式)とUSBハブ、各種試験機器を設置する。 被検体はオンボードに気圧/温度センサを搭載したマイコン基板。
除湿のため一晩おき、朝から冷却を開始した。昼に最低温度設定に到達したあと、冷却を止めて自然に温度が上昇するまで放置する。



 冷却が働き始めた後のランプレートは1℃/分程度だった。半日程度かけて段階的に温度を下げていったのが下のグラフとなる。温度制御は指定温度前後±2~3℃の変動がみられた。 運転を停止するとだいたい6時間で室温の8割まで戻る。


 被検体は庫内に接しているわけではないため、特に最低温度では設定温度より冷えにくくなる。

冷却し続けるには

 温度制御にはサーミスタが使われているが、サーミスタがつながるXHコネクタを基板から取り外し、代わりに10kΩの抵抗を取り付けると温度表示は-10度で固定される。
 これで-10度以下に温度設定をしておけば、運転を開始すると無限に稼働し続けるようになる。
 途中から連続運転すると、冷却面にて-30℃を確認した。(緑のグラフが冷却面、赤は冷蔵庫底部中央)
 

-30℃の時に運転をやめたときの冷却面の温度上昇率は、4℃/分と急峻だった。 蓋のシール部にケーブルを通しているため、蓋の閉まり具合も甘くなっているし、冷却部に銅箔テープで外部との熱入力接点を作ってしまっている。熱流入を押さえられれば、もう少し温度を下げられるかもしれない。
 あとは、試験体を効率よく冷やすため、冷却部から金属板を這わせて熱伝導させたり、断熱材をはめ込み、庫内の容積を減らしたりして、より冷えやすい環境を作るとよさそうだ。

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察してみると、プログラマ・USBCDCとしてATSAMD21が搭載されている(中央の四角いQFNパッケージ)MCU的にはnEDBG

【サボテン】太陽電池の結線

 久しぶりにサボテン計画。 忙しかったり投薬治療直前でだるかったりして、かなり放置していた。 さぼてんも不機嫌そうだ。 せっかくなので、園芸用の水受けに移す。  関節痛で寝込んでる間に、エイプリルフール終わってましたね^^・・・。  太陽電池の展開機構を想像したが、まずは太陽電池の結線を済ませよう。  配線を綺麗にまとめたくていろいろ探していたら、千石電商でぴったりなものを見つけた。 LEDリング基板 というらしい http://www.led-paradise.com/product/629?  本来はチップLEDをリング状にまとめる代物。 イレギュラーな使い道だ。   今度は小径のを買って、GX200のリングライトに仕立て上げよう。   嬉しいことにフレーム径にジャストフィット。 配線を綺麗にまとめられた。   太陽電池の接続部。逆流防止用にショットキーダイオードを入れている。 かなりスッキリ。 蛍光灯下 500ルクスでの実験。 EDLCは10Fを使用。  ちゃんと充電が行われている。 といっても、とてもとてもゆっくりとだけれど・・・。

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch ・内蔵VREF電圧が5種類と多い(0.55V,1.1V,1.5V.2.5V.4.3V

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア