スキップしてメイン コンテンツに移動

メモリ液晶を試す

スマートウォッチブームで、小型で省電力なディスプレイが注目されている。 このうち、割と入手しやすいものにシャープのメモリ液晶がある。 有名どころではPebbleが採用しているものだ。 Memory in pixcel という仕組みで、画面更新頻度を大幅に落とすことができるモノクロ液晶である。  (表示を維持するためにはわずかだが電力は必要で、電子ペーパーとは異なる)

参考 :メモリ液晶ディスプレイの構成と特徴  http://www.sharp.co.jp/corporate/rd/35/pdf/100_06_A4.pdf

今回、2タイプの液晶を取り寄せて比較してみた。 (Mouser)

LS013B4DN04 96x96  ドットピッチ:0.252mm  画面保持6uW、1Hz更新 12uW  @3V
LS013B7DH03 128x128 ドットピッチ0.18mm  画面保持50uW 1Hz更新 130uW @3V

※数値はデータシートより抜粋
  • 96x96画素のものはPNLC(/散乱型液晶)とあり、液晶層は下層の鏡面を透過/不透過することでピクセルを構成している。完全に透過にすると鏡となる。 動作中に電源を切り離すと、画面は徐々に不透過に戻っていった。
  • 128x128画素のものは後発のHR-TFT型で、視認性の高い黒いピクセルだ。ディスプレイ自体も薄くなっている。電源を断つと、表示はすぐ消える。

L: 96x96 PNLC                        R:128x128 HR-TFT

PNLCタイプはガラス基板の配線が直接観察できて綺麗だ。
96x96の液晶は、MSP430LaunchPad向けの拡張基板で、Sharp ® Memory LCD BoosterPack として入手することができる http://www.ti.com/tool/430boost-sharp96

この拡張基板を使えば、いろいろなメモリ液晶の評価が簡単にできるようになっている。 5V系大型ディスプレイ用にDC/DCが実装されていて、抵抗ジャンパの設定で有効化できる。秋月で販売されている2.7インチのHR-TFT http://akizukidenshi.com/catalog/g/gP-04944/ タイプも動かせるはず。

その他に、Adafruitからブレイクアウト基板がでている。http://www.adafruit.com/products/1393

PNLCタイプは、Pebbleと同時期に登場したMetawatchという製品に採用されていた。 ネットのレビュー記事を見返すと、反射で見づらいという記述がたくさん見られる。
中身がMSP430なため、TIの開発環境でファームウェアが開発できるようになっており、今もTIから開発キットとして販売されてるようだ。

表示してみる



96x96での表示を試してみたところ。 Energia IDEを使い、MSP430
SHARPMemLCDTxtというライブラリを使用した。


同じライブラリを、128x128用に修正してみたもの。制御は共通なので、画面定義のみを変えた。画素数とHR-TFTのコントラストがよくわかる。

なお、Energia IDE 0101E0014からは、MSP430FR5969 LaunchPad(2.0)がトラブル無く自由に書き込みができるようになった。 サンプルスケッチにもメモリ液晶のライブラリが入っているので、すぐ試すことができる。 (※0012から同梱された)

まとめ

  • PNLCは、ピクセルが鏡面反射するため、外光と角度によってはコントラストが低下する。 メリットは、HR-TFTよりもかなり省電力なこと。
  • HR-TFTは、コントラストが高く文字表示に適している。 

最近、RGBに対応したメモリ液晶が次々と発表されていて、駆動方式も同等なので割と面白そう。ただ、階調とコントラストがやや落ちてる雰囲気だ。

 個人的にメモリ液晶を使って、FRAMマイコンとセンサを搭載した回路を試作中。


KiCadに移行中

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察してみると、プログラマ・USBCDCとしてATSAMD21が搭載されている(中央の四角いQFNパッケージ)MCU的にはnEDBG

【サボテン】太陽電池の結線

 久しぶりにサボテン計画。 忙しかったり投薬治療直前でだるかったりして、かなり放置していた。 さぼてんも不機嫌そうだ。 せっかくなので、園芸用の水受けに移す。  関節痛で寝込んでる間に、エイプリルフール終わってましたね^^・・・。  太陽電池の展開機構を想像したが、まずは太陽電池の結線を済ませよう。  配線を綺麗にまとめたくていろいろ探していたら、千石電商でぴったりなものを見つけた。 LEDリング基板 というらしい http://www.led-paradise.com/product/629?  本来はチップLEDをリング状にまとめる代物。 イレギュラーな使い道だ。   今度は小径のを買って、GX200のリングライトに仕立て上げよう。   嬉しいことにフレーム径にジャストフィット。 配線を綺麗にまとめられた。   太陽電池の接続部。逆流防止用にショットキーダイオードを入れている。 かなりスッキリ。 蛍光灯下 500ルクスでの実験。 EDLCは10Fを使用。  ちゃんと充電が行われている。 といっても、とてもとてもゆっくりとだけれど・・・。

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch ・内蔵VREF電圧が5種類と多い(0.55V,1.1V,1.5V.2.5V.4.3V