スキップしてメイン コンテンツに移動

簡易無電源環境光センサ

太陽電池を簡易的な環境光センサとして使ってみた。

CPC1822はとても小さな太陽電池セル。
透明なSO8パッケージに封入されたアレイで構成され、4V 50μA(6000Lux時)の発電能力を持つとデータシートにはある。残念ながらすでに生産中止品なので、部品屋に流通している分で販売終了のようだ。部品箱から発掘されたので、供養と称して特性を調べてみた。

  50μAで何ができるかといえば、アプリケーションとしては光検出、トリクル充電の電源といった用途になる。μAレベルの平均消費電力であれば、コンデンサを充電することでPIC12Fあたりを間欠駆動することもできそう。

光量センサとしては、無電源でADCに直結する簡易的な環境光センサとして使う事もできそうなので、簡単に実験してみた。


CPC1822のパッケージは向きが分かりにくいが、結線されている足は二つだけ。
シャント抵抗を取り付けて、I-V変換された電圧を読み取る。
(写真では100kΩを取り付けたときのもの)
Arduino(AVR系列)なら、基準電圧に1.1Vが使えるので、10kΩでシャントすれば直射日光下で余裕のあるレンジになりそうだ。

10kΩの抵抗を接続し、照度計と一緒に窓辺に置いて、端子間電圧を測定した結果が下記のグラフになる。曇り空のため、あるていど均一な光量が得られていた。

薄曇りの窓辺での計測結果 < 4000Luxまで


その後、雲間を通して直射日光が得られたので、変動の激しい中ではあるけど、プロットしてみた。


 34401Aにつないでシャント電圧を測定してみると、曇り空でも本来のデータシートの発電特性よりも4倍ほど高い電流値を示していた。負荷抵抗を外して直接電流計測しても4倍の電流が計測できている。 そういうものなのかな…。 

 雲間の太陽光で計測した結果は、雲の動きが激しすぎて、プロット精度がとても落ちてしまった。快晴下で透過率を調節するのが理想かなぁ。直射日光下では発電電流が10倍くらいに増加しているようだ。

 曇りのプロットと陽光下のプロットの傾きはやや異なる。セル自体はフィルタもないので、赤外線などの影響をかなり受けている。照度を測るなら、可視光帯域に調整された専用のフォトダイオードを使うのが良だろう。

照度計としては怪しいけど、光量センサとしては使える。発電量を刻々とモニタするという意味では役目を果たすので、機械が生き抜く感覚としては十分そうだ。

太陽電池をセンサだけにつかうのはもったいないので、普段は発電していて、時々電流値を測定できると、マイコンのADCのみで太陽電池の健全性確認ができる。
発電電流の大きな太陽電池だと、シャント抵抗に低抵抗が必要なので熱損失がかなり増える。一時的に負荷からセルを切り離し、FETで測定時のみ一時的にシャントする経路を設けておくとよさそう。

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察...

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア...

CANトランシーバーを使わずにCAN通信をする

 CANバスの物理層は差動通信で、RS485の様にマルチドロップ接続が可能。  自動車におけるノイズ環境でも通信が成立するように、トランシーバICには様々な対策が施されている。  一方で、基板にマイコンを複数載せて、例えばブロードキャストメッセージを含んだ通信をさせたいとなったとき、ハードウェアとしてデータリンク層にあたるコントローラが実装されていて、メッセージフィルタ等が可能なCANバスは魅力的だ。しかし、長くても1m未満の配線長で差動ドライバのバスを駆動するのは電力的なペナルティが大きい。 CANバスの構成  トランシーバーには5Vレベルと3.3Vレベルの製品があり、車載以外だと省電力化のために3.3Vバスを採用する例があるらしい。(電圧が低いほうがドミナント時の電流は下がるので)製品によってはフォールトトレラントのための様々な機能が付加されている。    トランシーバーをつかわず、UARTの様に単純に接続することもできる。過去にはこのようなアプリケーションノートがあった。 On-Board Communication via CAN without Transceiver https://www.mikrocontroller.net/attachment/28831/siemens_AP2921.pdf CANコントローラの入出力を1線式マルチドロップバスとしてつなぐことで、トランシーバーが無くても通信が可能になる。規格外の使い方ではあるけれど、大幅に単純、かつ省電力になる。 コントローラのみでの接続 R4 MinimaにはCANコントローラーが内蔵されているため、上記アプリケーションノートの様に接続してみた。ダイオード2個と数kΩのプルアップ抵抗だけでサンプルコードの通信ができた。 https://docs.arduino.cc/tutorials/uno-r4-minima/can  とりあえず1Mbpsでも通信できていたけれど、Lowレベルの電位が下がり切っていないので、OD出力のバッファをTXに挟むとよいかもしれない。  R4 Minimaのコントローラのみで通信させている様子(250kbps) https://github.com/sandeepmistry/arduino-CAN/blob/master/API.md ライブラリの実装は以下で確認...

UNO R4 Minimaの仕様を眺める

CANバス内蔵Classicボードたち。 しかし割高になってしまった… Uno R4 Minimaを入手したので遊びつつ、どのような実装になっているのか、仕様を眺めてみた。 UNOは現在のArduino製品の中ではClassic Familyというカテゴリに入っており、歴史的なフォームファクタを継承している。ルネサス製MCUの採用で話題だけれど、5V単電源動作可能なARMマイコンとしては高機能だ。 要点としては、初学者向けのClassicファミリにCortex-M4が降りてきて、内蔵RTC、DAC出力、CANバスといった機能にもAPIレベルで対応しているという点になる。  スペックだけ見ると、反射的に3.3Vで動いてほしいとかいろいろ要望が湧いてくるが、ターゲットはあくまで初心者なのを忘れないようにする。 (いい感じの互換ボードに期待) ボードとピンマップを眺める 公式サイトのボード紹介ページでは、回路図と基板図をAltium365ビューワーで見ることができるようになっていた。回路図で抵抗を選択すると詳細が表示されるし、基板図上の実装と連携して位置をハイライトできたりする。 Minimaの実際の基板には16MHzの水晶は空きパターンとなっている。内蔵オシレーターで動いているようだ。 Minima 回路図 https://docs.arduino.cc/resources/schematics/ABX00080-schematics.pdf Wifi R4回路図 https://docs.arduino.cc/resources/schematics/ABX00087-schematics.pdf MinimaとWifi R4ではソケットに引き出されたSPIバスのマッピングが異なっている。これに伴いCANで使うピンも位置が変わっている。APIが用意されてるのにピンマップ表で表記していないのはボード依存のためかもしれない。 CANを使いたければシールド設計で対処するしかなさそう。  他にも、Minimaのソケットの3.3V出力は、Minimaのデータシートに書いてある通りMCUの内部電圧を生成しているLDOの出力を引き出している。そこまでやるのかというくらい割り切っている。  内部レギュレータから引き出せる電流量はArduinoとしては表向き載っていないけれど、ルネサス...