スキップしてメイン コンテンツに移動

CAL.4809の開発(2) ケース試作

CAL.4809のためのケースを設計してみた記録。 

21世紀のかまど。 マインクラフト感がある。

思考する速度で試作したい



 3Dプリンタを導入した。
個人的に初めて3Dプリンタ造形物のデータを作って、出力してもらったのが2012年頃だったので、すでに6年もの歳月が経っている・・・。 自己所有する機運が高まるのにだいぶかかった。 どうもハイプ・サイクル的な波が落ち着いた頃に導入する傾向がある。

 いろいろ検討してみた結果、今年出た新型、Flashforge Adventurer3に決めた。 完成品で箱なので、机の下に設置しても大丈夫なのが決め手。
 動作音は静かなインクジェットプリンタと炊飯中の炊飯器のファン音を足して二で割った感じ。 静音を謳うだけあってほとんど気にならない。
 Z軸キャリブレーションだけで快調に動いている。

 高速試作環境のために導入したわけなので、Fusion360に慣れる目的でCAL.4809の外装を試作してみた。 3Dモデリングも久しぶりだが、割と覚えていた。


 基板部分のデータはKiCadからエクスポートしたSTEPファイルを取り込んだ。 その外側にケースを作成する。
外装は基板外形を1mm拡張して、壁の厚みを0.8mmとした。
 前後はNATOベルトを通すための隙間を設けている。
 側面はボタン、IrDAポートのための加工を行った。 ボタン部は素材の弾性を使う。
ケース自体は装着を考え、下部の時計用ベース基板に固定するための爪を側面に設ける。

 上のCAD図は既に5回くらいのバージョンアップの後のもので、最初はボタン部などの造形をせず、外形だけでプリントして検証し、徐々に細部の造形に移っていった。 単純な造形なら30分ほどで出力できる。 彫り込みというか刈り込みというか、とにかく手元にプリンタが無いと試行錯誤ができない。

途中から出力方向をひっくり返した。 ほぼサポート材
モデリングの過程で出力して確認するサイクルを経て、最終的に一番精密なモードで1時間半かけて出力した。
ラフトを剥がすのに便利な 時計のコジアケ。 買ったけど時計を全然こじ開けてない。
 この造形だと糸引きがすごかった。 サポート材は簡単にはずれてくれるけれど、なにせ細かいのでうっかりちぎりかねない。 カッターなどで慎重に剥がしていく。


基板との間に0.2mm間隙を設けていたおかげか、ピッタリはまってくれた。 ボタンも押せる。 FDM式でも薄い部品は配置や形状を工夫すれば大丈夫そうだ。

下部の基板は前後のベルト部の出っ張りと、左右側面から張り出したケースの爪できっちり固定できている。
 この小さなサイズでは、細かいフィレット等を形成してしまうと潰れたり変形してしまったので、単純なくり抜きや多角形のままでよさそう。 壁とボタンの造形の隙間は、0.4mm空けても潰れがちになるので、スリット部の面取りなどを試してみる必要があるかも・・・。

 ケースをつけても、コイン電池は簡単に取り出すことができる。

 表の文字盤面が手付かずで残っているが、メモリ液晶を保護する仕組みとしても風防は必要になる。最後にネジ止めで固定する蓋構造を検討中。

 DIYでありがちな肥大化しすぎた筐体を防ぐ  という、無意識に設定していた目標は達成できた。  個人的には基板を覆ってしまうと外装のデザインの勝負となるのでちょっと寂しい。

Popular posts

【サボテン】太陽電池の結線

 久しぶりにサボテン計画。 忙しかったり投薬治療直前でだるかったりして、かなり放置していた。 さぼてんも不機嫌そうだ。 せっかくなので、園芸用の水受けに移す。  関節痛で寝込んでる間に、エイプリルフール終わってましたね^^・・・。  太陽電池の展開機構を想像したが、まずは太陽電池の結線を済ませよう。  配線を綺麗にまとめたくていろいろ探していたら、千石電商でぴったりなものを見つけた。 LEDリング基板 というらしい http://www.led-paradise.com/product/629?  本来はチップLEDをリング状にまとめる代物。 イレギュラーな使い道だ。   今度は小径のを買って、GX200のリングライトに仕立て上げよう。   嬉しいことにフレーム径にジャストフィット。 配線を綺麗にまとめられた。   太陽電池の接続部。逆流防止用にショットキーダイオードを入れている。 かなりスッキリ。 蛍光灯下 500ルクスでの実験。 EDLCは10Fを使用。  ちゃんと充電が行われている。 といっても、とてもとてもゆっくりとだけれど・・・。

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察してみると、プログラマ・USBCDCとしてATSAMD21が搭載されている(中央の四角いQFNパッケージ)MCU的にはnEDBG

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch ・内蔵VREF電圧が5種類と多い(0.55V,1.1V,1.5V.2.5V.4.3V

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア