スキップしてメイン コンテンツに移動

Arduino CLIの導入

Arduinoのコマンドライン環境 arduino-cli を触ってみる。

屋外設置のRaspberry pi3A+に導入し、接続した独自ボードに書き込みができる環境を構築してみた。 結論から言うと、一度コンフィグが済んでしまえば、コンパイル、アップロードはとても快適。 

手順を調べた時の環境 (2020年4月)
実行環境 :  Raspberrypi 3A+ , Raspberry pi 3B, RaspberryPi4B(4GB)
OSはRaspbian Burster(v7)で共通

バイナリ: arduino-cli_0.10.0_Linux-ARMv7.tar.gz
SSHターミナル:MovaXterm (Windows10)
ボード: Arduino Uno,  Arduino互換機 (Sanguinoベース)

最初の工程は大まかに4つ (2020年5月現在)

1 最新バイナリを任意のディレクトリに設置。バイナリはPathを通しておく
        RaspianだとLinux ARM 32bitでよいはず(そのうち64bitバージョンになりそう)

2 初期設定
       作業フォルダの設置
        Configファイルの初期化(ホームディレクトリに.arduino15が生成される)
                 $arduino-cli config init    
3 ボード関連のインストール 
       ボードインデックスの初期化
            $arduino-cli core update-index
        (確認)インストール可能なボード定義一覧のリスト表示
                 $arduino-cli core search
        ボード定義のインストール (リスト表示したIDを指定)例えば、
                $arduino-cli core install arduino:avr
        (確認)インストール済みボード定義の表示
                $arduino-cli core list
4 コンパイル、アップロードのテスト
        スケッチの作成
             $arduino-cli sketch new  test
                (ホームディレクトリにtestという名のディレクトリと、同名の.inoファイルが生成される)
        コンパイル(Ardiono UNO向け)
                コンパイルはボード名とディレクトリ名を指定するだけ
                成功するとアップロード用のバイナリがスケッチディレクトリに生成される
            $arduino-cli compile -b Arduino:avr:uno test
        アップロードのテスト (ボードをttyUSB0に繋いでいるとする)
                $arduino-cli upload -p /dev/ttyUSB0 -b arduino:avr:uno test
         
        (コンパイルできたら)何もしないスケッチなので、blink等をtest.inoに記述してみる
          ライブラリは、従来通りにスケッチが保存されるディレクトリにlibrariesフォルダを作成し、その中に置くだけでよい。                                
    
(任意) サードパーティのボード定義の追加、環境設定
        .arduino15内のarduino-cli.ymlの編集
              スケッチ設置場所の指定(デフォルトはホームディレクトリに生成されるArduinoフォルダ)
            (任意)additional urlsへ ボード定義の追加
             その後のインストール作業などは手順3以降の手続きを踏襲
     
  最初はコンパイルやアップロードのボード指定、ポート指定などがとっつきにくいが、随所でヘルプ(-h)を確認しながら慣れるしかない。コンパイルとアップロード回りはたくさんのオプションが存在する。
 
 ターゲットが固定であるなら、board attachでスケッチとボード、ポートを紐付けておくと楽。

     ボード定義には、名前のほかに、オプションで動作周波数やマイコン型番をリスト選択できるものがある。boardコマンドで確認してみよう。
    あらかじめarduino:avrをインストール済みであれば、MegaやPro miniがそれにあたる。
インストール済みのボード一覧を表示
            $arduino-cli board listall (インストールではなくリストオール)
ボードの詳細を確認(Arduino pro miniの場合)
            $ arduino-cli board details arduino:avr:pro
            Board name:     Arduino Pro or Pro Mini
            Required tools: arduino:avr-gcc                   7.3.0-atmel3.6.1-arduino5
                            arduino:avrdude                   6.3.0-arduino17
                            arduino:arduinoOTA                1.3.0
            Option:         Processor                         cpu
                            ATmega328P (5V, 16 MHz)         ✔ cpu=16MHzatmega328
                            ATmega328P (3.3V, 8 MHz)          cpu=8MHzatmega328
                            ATmega168 (5V, 16 MHz)            cpu=16MHzatmega168
                            ATmega168 (3.3V, 8 MHz)           cpu=8MHzatmega168
オプションとして、動作周波数の設定とマイコン型番の組み合わせが確認できる。
コンパイルやアップロード時に指定するときは以下のようにcpu=を追記する。
            $arduino-cli compile -b arduino:avr:pro:cpu=8MHzatmega328  test

その後、Ubuntu20.04をインストールしたRaspberry pi4でも64ビットバイナリで同じように構築できた。    
CUIの良いところは、非力な環境でも使えること。Pi zeroやPocketBeagleでも実行できるので、SSH接続で書き換えられる超ミニマムな開発環境となった。Arduinoレベルでも開発環境の整備って大変なので、VMイメージやddしたSDカードイメージとして管理できるのは楽。

PocketBeagleを組み込んだボード 
性能はPi Zeroとだいたい同じだがCortex-A8。アーキテクチャがオープンなのと、I/O用サブコアが混載されているので弄り甲斐がある

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察してみると、プログラマ・USBCDCとしてATSAMD21が搭載されている(中央の四角いQFNパッケージ)MCU的にはnEDBG

【サボテン】太陽電池の結線

 久しぶりにサボテン計画。 忙しかったり投薬治療直前でだるかったりして、かなり放置していた。 さぼてんも不機嫌そうだ。 せっかくなので、園芸用の水受けに移す。  関節痛で寝込んでる間に、エイプリルフール終わってましたね^^・・・。  太陽電池の展開機構を想像したが、まずは太陽電池の結線を済ませよう。  配線を綺麗にまとめたくていろいろ探していたら、千石電商でぴったりなものを見つけた。 LEDリング基板 というらしい http://www.led-paradise.com/product/629?  本来はチップLEDをリング状にまとめる代物。 イレギュラーな使い道だ。   今度は小径のを買って、GX200のリングライトに仕立て上げよう。   嬉しいことにフレーム径にジャストフィット。 配線を綺麗にまとめられた。   太陽電池の接続部。逆流防止用にショットキーダイオードを入れている。 かなりスッキリ。 蛍光灯下 500ルクスでの実験。 EDLCは10Fを使用。  ちゃんと充電が行われている。 といっても、とてもとてもゆっくりとだけれど・・・。

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch ・内蔵VREF電圧が5種類と多い(0.55V,1.1V,1.5V.2.5V.4.3V

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア