スキップしてメイン コンテンツに移動

AR八木アンテナ


手持ちの八木アンテナによる衛星追尾をしてみると、見えない衛星の導入を簡単にしてみたくなる。

…と思ったので思いついたのは、スマートフォンを八木アンテナに取り付け、ガイドさせるというもの。最近流行りのARだ。


昨今のスマートフォンは計算性能含めて立派なコンピュータと言えるが、センサを搭載したり、手のひらサイズだったりすることで、より人と環境にフレンドリーなデバイスに進化した。


今までの歴史に登場した様々な端末でも軌道計算は可能だが、iOSやAndroidでは加えて以下のセンサを使うことができる。

現在地→GPS
方位角→電子コンパス
仰角(姿勢)→加速度センサ

これらの連携により、計算機は軌道計算を観測者の現在地、方向を含めて算出することができる。 

Androidには既に、「GoogleSkyMap」のような角度+コンパス+GPS座標を使ったAR天体ビューワーソフトが存在するし、すでにToriSatのようなISSビューワが親しまれている。 

今回は任意の衛星を導入したいので、TLEを入力できる汎用なものが必要になりそうだ。
TLEとは地球軌道上の衛星の軌道要素のフォーマットで、軍事以外の宇宙機はすべて登録されている。
PCの軌道表示ソフト「Orbitron」のようなソフトは無いだろうか。

・・・で、たまたまAndroidマーケットで検索したところ、まさに上記のことができるアプリを発見。作る人はいるものだ。
「DroidSat」
 GoogleSkymapのようなAR感で、TLEデータをダウンロードして座標とともに表示してくれる。 今のところ、目的の衛星の現在地を眺める以外はほとんど機能が無いので、改良に期待するか、同じようなアプリを自作するべきなのかもしれない。 手持ちの端末がAndroid1.6止まりなので、他にもよさそうなアプリがありそうな気はする。


試作


6素子の500円アンテナにAndroid端末(HT-03A/HTC magic)を取り付けてみた。
うーん、それにしても見た目が・・・ 
せっかく追尾するからには、もうちょっとアンテナ自体の指向性を増したい。6素子だと16方位の指示くらいでもよさそうな気がする。

 結果としては、かなりよかった。 

PCでやると方位まではわからないので、おおよその範囲を探すことになる。地面に置いたPCで衛星の角度を確認して、アンテナを向け直し、目的の衛星の周波数サーチや受信周波数のドップラー補正までこなすのはかなり面倒な作業だが、ARだと手持ちの装備でガイドと受信が完結するので割り込みが減ってとても楽になる。

 週末のアマチュア衛星の交信や、大学衛星のビーコンなどの受信も成功した。特にISS高度の衛星やデオービット間近の衛星は足が早いので、ドップラー補正まで自動化できたらかなり本格的な道具になるかもしれない。


理想型
iPhone版AR_GS(Ground Station)

 スマートフォンの現在の機種であれば、TLEによる導入支援に加えて、イヤフォンジャックからの音声録音&電波解析も出来るのだろう。電波を出さないのであれば、無線機はSDR受信ドングルという形での接続もありうる。Bluetoothやソフトモデム経由で外部アクチュエータをつなぎ、追尾作業も完全自動化なポータブル地上局も作れる。
 実はArduino程度でもTLEから軌道計算ができる。ということでもっと組み込んだ形でもARアンテナが作れる。デジタルコンパスとGPS、加速度計を揃えるとローコストとは言い難いけど、無線機の周波数制御とあわせて自動化するアプローチの一つだ。
 
 スマートフォンのもう一つの強みは
ネットワークの構築。スマートフォンならアプリ内でSNS連携を行い、受信者同士をつなげることが簡単だ。イベント化させた草の根活動にはいいかも。
 無線免許資格者であればアップリンクも出来るので、法令では出来ない無人局からの送信の代替案となったり・・・するかもしれない



参考文献とお借りしたもの
DroidSat http://sites.google.com/site/droidsatproject/
電波受信まとめ(自家記事) http://kemushicomputer.blogspot.com/2010/12/blog-post_18.html
500円八木アンテナの改良版(自家記事) http://kemushicomputer.blogspot.com/2011/03/500.html
Orbitron http://www.stoff.pl/

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察...

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア...

CANトランシーバーを使わずにCAN通信をする

 CANバスの物理層は差動通信で、RS485の様にマルチドロップ接続が可能。  自動車におけるノイズ環境でも通信が成立するように、トランシーバICには様々な対策が施されている。  一方で、基板にマイコンを複数載せて、例えばブロードキャストメッセージを含んだ通信をさせたいとなったとき、ハードウェアとしてデータリンク層にあたるコントローラが実装されていて、メッセージフィルタ等が可能なCANバスは魅力的だ。しかし、長くても1m未満の配線長で差動ドライバのバスを駆動するのは電力的なペナルティが大きい。 CANバスの構成  トランシーバーには5Vレベルと3.3Vレベルの製品があり、車載以外だと省電力化のために3.3Vバスを採用する例があるらしい。(電圧が低いほうがドミナント時の電流は下がるので)製品によってはフォールトトレラントのための様々な機能が付加されている。    トランシーバーをつかわず、UARTの様に単純に接続することもできる。過去にはこのようなアプリケーションノートがあった。 On-Board Communication via CAN without Transceiver https://www.mikrocontroller.net/attachment/28831/siemens_AP2921.pdf CANコントローラの入出力を1線式マルチドロップバスとしてつなぐことで、トランシーバーが無くても通信が可能になる。規格外の使い方ではあるけれど、大幅に単純、かつ省電力になる。 コントローラのみでの接続 R4 MinimaにはCANコントローラーが内蔵されているため、上記アプリケーションノートの様に接続してみた。ダイオード2個と数kΩのプルアップ抵抗だけでサンプルコードの通信ができた。 https://docs.arduino.cc/tutorials/uno-r4-minima/can  とりあえず1Mbpsでも通信できていたけれど、Lowレベルの電位が下がり切っていないので、OD出力のバッファをTXに挟むとよいかもしれない。  R4 Minimaのコントローラのみで通信させている様子(250kbps) https://github.com/sandeepmistry/arduino-CAN/blob/master/API.md ライブラリの実装は以下で確認...

UNO R4 Minimaの仕様を眺める

CANバス内蔵Classicボードたち。 しかし割高になってしまった… Uno R4 Minimaを入手したので遊びつつ、どのような実装になっているのか、仕様を眺めてみた。 UNOは現在のArduino製品の中ではClassic Familyというカテゴリに入っており、歴史的なフォームファクタを継承している。ルネサス製MCUの採用で話題だけれど、5V単電源動作可能なARMマイコンとしては高機能だ。 要点としては、初学者向けのClassicファミリにCortex-M4が降りてきて、内蔵RTC、DAC出力、CANバスといった機能にもAPIレベルで対応しているという点になる。  スペックだけ見ると、反射的に3.3Vで動いてほしいとかいろいろ要望が湧いてくるが、ターゲットはあくまで初心者なのを忘れないようにする。 (いい感じの互換ボードに期待) ボードとピンマップを眺める 公式サイトのボード紹介ページでは、回路図と基板図をAltium365ビューワーで見ることができるようになっていた。回路図で抵抗を選択すると詳細が表示されるし、基板図上の実装と連携して位置をハイライトできたりする。 Minimaの実際の基板には16MHzの水晶は空きパターンとなっている。内蔵オシレーターで動いているようだ。 Minima 回路図 https://docs.arduino.cc/resources/schematics/ABX00080-schematics.pdf Wifi R4回路図 https://docs.arduino.cc/resources/schematics/ABX00087-schematics.pdf MinimaとWifi R4ではソケットに引き出されたSPIバスのマッピングが異なっている。これに伴いCANで使うピンも位置が変わっている。APIが用意されてるのにピンマップ表で表記していないのはボード依存のためかもしれない。 CANを使いたければシールド設計で対処するしかなさそう。  他にも、Minimaのソケットの3.3V出力は、Minimaのデータシートに書いてある通りMCUの内部電圧を生成しているLDOの出力を引き出している。そこまでやるのかというくらい割り切っている。  内部レギュレータから引き出せる電流量はArduinoとしては表向き載っていないけれど、ルネサス...