スキップしてメイン コンテンツに移動

MSP430FR5969 LaunchPadの修復



MSP430FR5969 LaunchPadで最近遊んでいる。
低消費電力前提のアプリケーションや、FRAMに変数を置く使い方を試しているところ。デバッガに搭載されたEnergyTraceも、消費電流を細かく観測できて面白い。

手元のボードで問題が起きたのは、Energiaで試そうとして、デバッガをアップデートするという表示が出た時。 アップデートを選択したところ、失敗したというダイアログと共に、COMが消え、デバッガの緑色のLEDも消えてしまった。 USB経由ではケーブルを挿しなおしてもまったく認識されない状態に陥った。 裏のソフトウェアのバージョンが古かったのかもしれない。 もうすこし調べておくべきだった…。

USB経由のブートローダーが生きているはずだが、接続しても何も出てこない。 文鎮化していた。

仕方ないので、デバッグのインターフェースについていろいろ情報を集めた。

新しめのLaunchPadに搭載されたデバッグ部分は、ez-FET Liteというもので、いろいろなマイコンをデバッグ可能らしい。 調べるとオープンソース用のパッケージがあった。
リビジョンは1.1で、ソフトウェア、回路図、ドキュメントが含まれている。
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430_ezFETLite/latest/index_FDS.html

部品発注も兼ねて、もう一台新しいLaunchPadを発注…。
(モノが届くまでに、UART BSLによる書き込みを試してみたが、上手く認識できなかった)

手順 

ボードでの作業
MSP-EXP430FR5969 Hardware Design Filesの回路図、レイアウト図を参照
・ターゲットとなるデバッグボードの、3ピンと7ピンのスルーホールにコネクタをはんだ付け
・書き込み側のLaunchPadのターゲット側のジャンパピンを全て外し、単独のデバッガとする。
・書き込む側の EZfet-VCC, GND, TEST, RESET へ接続。



書き込み作業 (作業環境: Windows7)
MSP-EXP430FR5969 Software Examples
eZ-FET lite rev 1.10 Release Package
が必要。
・書き込むファイルは、eZ-FET lite rev 1.10 Release Package/Firmwareフォルダ内のEZFET_LITE_Rev1_1_FW_3_3_0_6.txt
 MSP-EXP430FR5969 Software Examples/Binaryの中に、任意の名前で新しく作成したフォルダをつくり、ファームウェアのtxtファイルを持ってくる。
・Binary内の任意のサンプルフォルダから、バッチファイルをコピーし、作成したフォルダにファームウェアとともに設置。 このバッチファイルをテキストエディタで編集し、ターゲットマイコンの名前(MSP430F5528)、書き込むファームウェアファイルの名前に書き換える。

 このバッチファイルは、Software Examples内に同梱されている、MSP430Flasher.exeという書き込み用プログラムを呼ぶためのものだ。

デバッグ側の接続が間違っていなければ、バッチファイルを起動すると書き込みが行われる。
完了後に配線を外し、USBケーブルで接続すれば、緑のLEDが点灯し、認識が行われる。

動作チェックのために、FR5969用のExampleの書き込みを行ってみると、MSP430Flasher.exe がファームウェアの更新を薦めてくる。更新を選択すると、新しいファームウェアがロードされた。


CCSでLチカサンプルをビルドして、デバッグを行ってみると、またファームウェアがアップデートされた。 enegyTraceも動作しているので、元通りにできたようだ。めでたしめでたし。



 すこしサンプルを修正して、1HzのLチカで消費する電力を可視化したところ。 消費電流デバッグが統合されているのはとても便利。

デバッガのバージョンは、CCSでは常に最新のファームウェアがロードされる。Energiaでは古いMSP430.dllが使われているようで、そのあたりが文鎮化の原因なのかもしれない。

TIからMSP430Flasherをダウンロードして、Energia内のMSP430.dllとHAL.dllを置き換えると上手く行くとあった。 実際、dllを置き換えた後はEnergia上でのアップデートに成功している。
 http://forum.43oh.com/topic/5683-energia-0101e0012-and-msp430fr5969/page-2

ということで、せっかく2個もあるし、しばらくは片方をCCS専用にして、もう片方をEnergiaとLinux向けのファームウェアと分けることにした。


Popular posts

【サボテン】太陽電池の結線

 久しぶりにサボテン計画。 忙しかったり投薬治療直前でだるかったりして、かなり放置していた。 さぼてんも不機嫌そうだ。 せっかくなので、園芸用の水受けに移す。  関節痛で寝込んでる間に、エイプリルフール終わってましたね^^・・・。  太陽電池の展開機構を想像したが、まずは太陽電池の結線を済ませよう。  配線を綺麗にまとめたくていろいろ探していたら、千石電商でぴったりなものを見つけた。 LEDリング基板 というらしい http://www.led-paradise.com/product/629?  本来はチップLEDをリング状にまとめる代物。 イレギュラーな使い道だ。   今度は小径のを買って、GX200のリングライトに仕立て上げよう。   嬉しいことにフレーム径にジャストフィット。 配線を綺麗にまとめられた。   太陽電池の接続部。逆流防止用にショットキーダイオードを入れている。 かなりスッキリ。 蛍光灯下 500ルクスでの実験。 EDLCは10Fを使用。  ちゃんと充電が行われている。 といっても、とてもとてもゆっくりとだけれど・・・。

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察してみると、プログラマ・USBCDCとしてATSAMD21が搭載されている(中央の四角いQFNパッケージ)MCU的にはnEDBG

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch ・内蔵VREF電圧が5種類と多い(0.55V,1.1V,1.5V.2.5V.4.3V