スキップしてメイン コンテンツに移動

みちびき(QZSS)対応のGPSチップはすでに普及している?


日本のGPS補強衛星「みちびき」が移動体で3センチという高精度測位を実現したというニュースが出てしばらくたった。 ロボット的な応用分野としては気になるみちびきへ対応したGPS受信機の出現と、高精度測位が一般に普及する日はいつ来るのだろう。

(追記 一般的な利用では誤差1.5m程度とのこと。ただし、天頂付近という高仰角にGPS衛星がひとつ増えるということは、都市部で測位精度が向上するということなのでメリットは多い)

 実はすでに「対応したGPS受信機」を搭載した製品は出荷されている。 たとえばドコモの展開する「Galaxy S」、「Galaxy Tab」は、Bloadcom社がQZSSへの対応を表明したGPS受信LSI「BCM4751」を搭載していた。(分解記事)
といっても、みちびきを受信できたという記事やレポートはまだあまり見当たらない。

 GPS衛星は搭載された高精度な原子時計を基準として、地上に自らの軌道情報と時刻を放送している電波灯台だ。
モバイル端末が搭載するGPS受信機は、受信して得られたGPS衛星群の時刻と軌道情報を元に、受信した端末の座標を計算し、緯度、経度、高度を出力する。計算に使える衛星の数が多いほど、精度が上がっていく。
 現在のGPS受信機は小型化が進み、GPS信号の増幅、復調、計算までワンチップでこなすようになった。モジュールやICも様々な会社が生産している。

GPS衛星は一つ一つが識別コードを持ち、受信機はそれを解読する。
 従来のGPSモジュールでは、みちびきに割り当てられた新しい識別コードを取得する設定が無いため、そのままでは情報を使うことが出来ない。
 同様に独自GPS(欧州のガリレオ、露のGLONASSなど)も、利用するにはそれぞれのデータ形式や、周波数に対応したアンテナ、ハードウェアが必要となる。

端末も、GPSモジュールの生成した計算済みのデータ(NMEAフォーマットなど)を受け取るだけなので、端末側が頑張っても、GPSモジュールが対応しないと受け取ることができない。
モジュール自体の設定やファームウェアを書き換える必要があるが、これは普通GPSモジュールが出荷される前に書き込まれるものなので、専用GPS端末でないと、既に出荷された機器で対応することは無いだろう。

 さて、BroadcomのBCM4751は、出荷時点でQZSSやその他補強信号を出す衛星へ対応を謳っている。プレスリリース

そのため、理屈上はみちびきにも対応しているはずだが、そのへんは端末がソフトウェアで有効化しているかというのはわからない。

(追記)GPS受信機が対応しても、ソフトウェアが拡張されたIDを認識できず表示されなかったり、違うIDで表示されるというケースがあるようだ。

今回のカラクリは、対応したGPS受信機を搭載しても、その機能が使われているとは限らない。ということでした。 多機能化するモバイル機器ではよくあることだ。

 Androidでは統合チップ内にGPS受信機能が内蔵されていて、ほとんどの機種は統合機能を使っている。 実は外付けGPSモジュールを搭載する端末はそんなに多くない。
後継のGalaxy S2のGPSソリューションは他社の未対応品になっていたりするあたり、供給体制と調達コストなどが主な採用理由とみられる。

これはiPhoneでも言えることで、iPhone4はBroadcomだったが、後発のCDMA版はQualcommの統合機能を使っている。
GLONASSに対応したiPhone4S/5はこの設計を引き継いでおり。 統合チップが独自GPSに対応することが、モバイル端末での高精度GPS利用の普及フェーズとなるだろう…。 ただ、最近の端末はネットワーク測位なのか、GPS測位なのか曖昧になっているのがやや気になる。

電子工作的には、QZSS対応のGPS受信モジュールを手に入れるほうが早そう。ちらほら出てきていることだし…。

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察...

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア...

CANトランシーバーを使わずにCAN通信をする

 CANバスの物理層は差動通信で、RS485の様にマルチドロップ接続が可能。  自動車におけるノイズ環境でも通信が成立するように、トランシーバICには様々な対策が施されている。  一方で、基板にマイコンを複数載せて、例えばブロードキャストメッセージを含んだ通信をさせたいとなったとき、ハードウェアとしてデータリンク層にあたるコントローラが実装されていて、メッセージフィルタ等が可能なCANバスは魅力的だ。しかし、長くても1m未満の配線長で差動ドライバのバスを駆動するのは電力的なペナルティが大きい。 CANバスの構成  トランシーバーには5Vレベルと3.3Vレベルの製品があり、車載以外だと省電力化のために3.3Vバスを採用する例があるらしい。(電圧が低いほうがドミナント時の電流は下がるので)製品によってはフォールトトレラントのための様々な機能が付加されている。    トランシーバーをつかわず、UARTの様に単純に接続することもできる。過去にはこのようなアプリケーションノートがあった。 On-Board Communication via CAN without Transceiver https://www.mikrocontroller.net/attachment/28831/siemens_AP2921.pdf CANコントローラの入出力を1線式マルチドロップバスとしてつなぐことで、トランシーバーが無くても通信が可能になる。規格外の使い方ではあるけれど、大幅に単純、かつ省電力になる。 コントローラのみでの接続 R4 MinimaにはCANコントローラーが内蔵されているため、上記アプリケーションノートの様に接続してみた。ダイオード2個と数kΩのプルアップ抵抗だけでサンプルコードの通信ができた。 https://docs.arduino.cc/tutorials/uno-r4-minima/can  とりあえず1Mbpsでも通信できていたけれど、Lowレベルの電位が下がり切っていないので、OD出力のバッファをTXに挟むとよいかもしれない。  R4 Minimaのコントローラのみで通信させている様子(250kbps) https://github.com/sandeepmistry/arduino-CAN/blob/master/API.md ライブラリの実装は以下で確認...

UNO R4 Minimaの仕様を眺める

CANバス内蔵Classicボードたち。 しかし割高になってしまった… Uno R4 Minimaを入手したので遊びつつ、どのような実装になっているのか、仕様を眺めてみた。 UNOは現在のArduino製品の中ではClassic Familyというカテゴリに入っており、歴史的なフォームファクタを継承している。ルネサス製MCUの採用で話題だけれど、5V単電源動作可能なARMマイコンとしては高機能だ。 要点としては、初学者向けのClassicファミリにCortex-M4が降りてきて、内蔵RTC、DAC出力、CANバスといった機能にもAPIレベルで対応しているという点になる。  スペックだけ見ると、反射的に3.3Vで動いてほしいとかいろいろ要望が湧いてくるが、ターゲットはあくまで初心者なのを忘れないようにする。 (いい感じの互換ボードに期待) ボードとピンマップを眺める 公式サイトのボード紹介ページでは、回路図と基板図をAltium365ビューワーで見ることができるようになっていた。回路図で抵抗を選択すると詳細が表示されるし、基板図上の実装と連携して位置をハイライトできたりする。 Minimaの実際の基板には16MHzの水晶は空きパターンとなっている。内蔵オシレーターで動いているようだ。 Minima 回路図 https://docs.arduino.cc/resources/schematics/ABX00080-schematics.pdf Wifi R4回路図 https://docs.arduino.cc/resources/schematics/ABX00087-schematics.pdf MinimaとWifi R4ではソケットに引き出されたSPIバスのマッピングが異なっている。これに伴いCANで使うピンも位置が変わっている。APIが用意されてるのにピンマップ表で表記していないのはボード依存のためかもしれない。 CANを使いたければシールド設計で対処するしかなさそう。  他にも、Minimaのソケットの3.3V出力は、Minimaのデータシートに書いてある通りMCUの内部電圧を生成しているLDOの出力を引き出している。そこまでやるのかというくらい割り切っている。  内部レギュレータから引き出せる電流量はArduinoとしては表向き載っていないけれど、ルネサス...