スキップしてメイン コンテンツに移動

ゆっくり音声合成ICの組み立て1 ~QFPパッケージの取り付け~


ACT BRAIN製音声合成IC ATS001B を組み立てる。
 半年前に基板設計したのだが、リセット周りの回路を間違えてて、ICを焼いてしまった。
 あまり時間が取れなかったので、もう一つ仕入れたけど放置していた。
やっぱりいろいろ試行錯誤してから回路に組み込む方針に切り替えて、 変換基板を買ってきた。


 
切手大しかない、
0.5mmピッチのパッケージをはんだづけするにはどうすべきか。

 とりあえず漁った方法から、現在のところ失敗無しできているのがこの大雑把な方法。
 はんだ吸い取り線、30Wのこて、仕上がりを確認するための適当なルーペ、明るい場所を用意。


 まず一箇所のみはんだめっきして、位置合わせをする。
できたらその後、数カ所固定しておく。

 一列まるごと、豪快に半田を盛る。 ブリッジ上等。 ただし盛りすぎるとあとで大変なので、パターン面にしっかりはんだが行き渡る程度で大丈夫。 Wの小さい半田ごてだと、はんだを溶かすのに時間がかかるので注意。

 はんだ吸い取り線を当て、鏝を横にして吸い取り線に対して接地面積を増やしながら加熱。
スーッと吸い取られるので、適当なタイミングで吸い取り線を離す。 一度加熱され液状になったはんだが、吸い取られる途中で足全体、とくに基板との接点に流れ込んでいることが重要(だと思います^^)

  吸い取りは、はんだブリッジを取り除ければ大丈夫。 少量が飛び出していた場合は、その足を小手先で再加熱してはんだを伸ばす。
接地が不安な場合は、多めに残して一足ずつ加熱していくこともある。
 写真はヤニをIPAで拭き取った後。 ハンダが足全体に流れた。

光源に透かしたところ。 大丈夫ですね。
 すべての辺が終わったら、デジタルマルチメータで足同士がショーとしてないかだけチェックしておきましょう。
 なお、吸い取りすぎると、足の接地ができてない場合があるので注意。
 以前H8を自作基板に載せた後、I2C配線の半田不良でI2Cの動作がおかくなり、高速転送時だけエラーが発生すると言う難易度の高いバグを生産したことがあります。
  I2Cに割り当てた足をすこしずつ再加熱してみた結果治ったのですが、徹夜で原因究明するハメに。 ロジアナ欲しい。
 

<周辺回路>
 自作基板でArduino用の自作シールドを作ろうかと思っているので、試作機も汎用シールドを使う。

 開発当初は自作用シールドが近場で手に入らなかったが、最近はいろいろなところが販売してますね。 スイッチサイエンス製を買ってますが、千石でサンハヤト製のも取り扱い始めたようです。


 変換基板下が結構空いてるので、周辺回路はそこに収めることにする。 Arduino Pro用に余った分をカット。

 配線は後日。 これなら簡単なセンサつなぐだけで、しゃべらせることができるかな。
 AquesTalkもバージョン上がってるし、それに合わせて新チップが出てきたりするのだろうか。
 カーナビがゆっくり声だったら、思わず速度を落としたりして。

Popular posts

【サボテン】太陽電池の結線

 久しぶりにサボテン計画。 忙しかったり投薬治療直前でだるかったりして、かなり放置していた。 さぼてんも不機嫌そうだ。 せっかくなので、園芸用の水受けに移す。  関節痛で寝込んでる間に、エイプリルフール終わってましたね^^・・・。  太陽電池の展開機構を想像したが、まずは太陽電池の結線を済ませよう。  配線を綺麗にまとめたくていろいろ探していたら、千石電商でぴったりなものを見つけた。 LEDリング基板 というらしい http://www.led-paradise.com/product/629?  本来はチップLEDをリング状にまとめる代物。 イレギュラーな使い道だ。   今度は小径のを買って、GX200のリングライトに仕立て上げよう。   嬉しいことにフレーム径にジャストフィット。 配線を綺麗にまとめられた。   太陽電池の接続部。逆流防止用にショットキーダイオードを入れている。 かなりスッキリ。 蛍光灯下 500ルクスでの実験。 EDLCは10Fを使用。  ちゃんと充電が行われている。 といっても、とてもとてもゆっくりとだけれど・・・。

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察...

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch...

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア...