スキップしてメイン コンテンツに移動

UMPCもどきの製作3 構造のくみ上げ


UMPCもどきの2つ目の制作記事からまた半年が過ぎた。

 その間に、RaspberyPi4が国内入手できるようになっていた。が、電力設計などでまだ扱いづらいところがある。アイドル状態で結構温かくなるサードパーティーのヒートシンクを触っていると、専用のPMICが無いRaspiの弱点が目立ってきたように感じる。

 今回はBT接続の小型キーボードのデッドストック品の入手をきっかけとして、唐突にWaveShareのHDMI接続5.5インチOLEDモジュール(Raspi3用)のフレームを作成した。
 その流れを生かし、ハンドヘルド端末として骨組み構造をプロトタイプしてみた。

始まり

 中古で手に入れたキーボードはエレコムのTK-GMFBP029BKという製品。 日本語46キー配列。2012年にiPhone向けの英語配列モデルと同時に展開され、手持ちでライトなチャット入力用途とされていたもの。電源は単四電池x2なので経年劣化は無い。
 これが5.5インチOLEDディスプレイと横幅がぴったりだったので、フレームをつくってハンドヘルド端末を組み立ててみることにした。

5.5インチ HDMI液晶について

 手持ちの5.5インチディスプレイはHDMI接続、かつタッチ部はUSBなので接続対象を選ばないが、基板に直に組み付けられるのはRaspi3系統だけとなる。今確認すると、   Raspi4にも対応し、ケース付きになっている後発品も併売されている。

3Bと4Bを買えばすぐわかるけれど、両者はHDMI端子もだが、LANとUSBコネクタの配置まで異なっており、3B用のHDMI液晶キットは4Bではそのままだと使えないので、購入時には注意だ。

https://www.waveshare.com/product/displays/lcd-oled/lcd-oled-1/5.5inch-hdmi-amoled-with-case.htm
拡散されるとは思ってなかった写真

 フレーム側面にキーボードについていた展開式カバーを模擬した固定ヒンジを設けた。
フラットなキーボード端末を目指していたので、特に折り畳み機構は設けなかった。 バッテリ位置と基板の拡張性を考慮しなければ、PSIONのハンドヘルド端末ライクな形態もとれると思う。 

ディスプレイ部のフレームの横幅は144㎜で、幸運にもAdventurer3で出力できるぎりぎりの大きさだった。このサイズはベッドの僅かな傾きで四隅のうちのどこかの食いつきが悪くなり、一つの隅だけ剥がれて反り上がりが発生しやすい。そのため、1層目の品質を見ながら高さ調整を繰り返すことになった。
 このままでもいいけれど、バッテリを内蔵して持ち運びできるようにしたい。ということで、フレームにM3のジュラコンスペーサを立て、残りの筐体フレームを設計していった。
3回ほどリビジョンアップした後の形状

底部のフレームも何とか出力に成功。PETGなのでPLAよりは柔軟性がある


 最終的に、底部プレート+バッテリ上部のプレート、ディスプレーフレームの3層構造になった。キーボードは10Whのモバイルバッテリの上に乗っかる形で、自由に角度をつけられるようにした。

 筐体設計で考慮したのは、RaspberryPiの端子アクセスと拡張基板の搭載を邪魔しないこと、ばらばらに分解できること。バッテリへのアクセスも同様に解放されていること。入れ替えが効くよう、あくまでコンポーネントを一つにまとめているだけにとどめている。
手持ちした感覚は良好
造形が気に入っている英語圏の電子辞書とツーショット

 ひとまず形にすると、あれこれ改良点や機能追加が浮かんでくる。 すでに耐衝撃端末のようなバンパーをTPU素材でつくってみようとか、オリジナルキーボードをつけようとか、そういうことばかり考えている。ヒトはなぜハンドヘルド端末に心惹かれるのだろう…と、主語を無駄に大きくしながら、コモディティ化した市場とサイズ制限によるギリギリのスペックゆえに生まれる多様性の儚さに思いを馳せるのであった。

Popular posts

Arduino Nano Everyを試す

 秋月で売っていたAtmega8と、感光基板でエッチングしたArduino互換ボードを製作してみて、次に本家ボードも買って…  と気が付いたら10年が経過していた。  ハードウェア的な観点では、今は32bitMCUの低価格化、高性能化、低消費電力化が著しい。動作周波数も100MHz超えが当たり前で、30mA程度しか消費しない。  動作電圧範囲が広く、単純な8ビットMCUが不要になることはまだないだろうけど、クラシックなAVRマイコンは値上がりしており、価格競争力は無くなりつつある。 そしてコモディティ化により、公式ボードでは不可能な値付けの安価な互換ボードがたいていの需要を満たすようになってしまった。     Arduino Nano Every https://store.arduino.cc/usa/nano-every https://www.arduino.cc/en/Guide/NANOEvery  そんな中、Arduino本家がリリースした新しいNanoボードの一つ。  他のボード2種はATSAMD21(Cortex-M0+)と無線モジュールを搭載したArduino zero(生産終了済み)ベースのIoT向けボードだが、 Nano EveryはWifi Rev2と同じくAtmega4809を採用していて、安価で5V単電源な8ビットAVRボードだ。  Atmega4809はATmegaと名がついているが、アーキテクチャはXMEGAベースとなり、クラシックAVRとの間にレジスタレベルの互換性は無い。   https://blog.kemushicomputer.com/2018/08/megaavr0.html  もちろん、ArduinoとしてはArduinoAPIのみで記述されたスケッチやライブラリは普通に動作するし、Nano Every用のボードオプションとして、I/Oレジスタ操作についてはAPIでエミュレーションするコンパイルオプション(328Pモード)がある。 公式のMegaAVR0ボードはどれもブートローダーを使わず、オンボードデバッガで直接書き込みを行っている。  ボードを観察してみると、プログラマ・USBCDCとしてATSAMD21が搭載されている(中央の四角いQFNパッケージ)MCU的にはnEDBG

【サボテン】太陽電池の結線

 久しぶりにサボテン計画。 忙しかったり投薬治療直前でだるかったりして、かなり放置していた。 さぼてんも不機嫌そうだ。 せっかくなので、園芸用の水受けに移す。  関節痛で寝込んでる間に、エイプリルフール終わってましたね^^・・・。  太陽電池の展開機構を想像したが、まずは太陽電池の結線を済ませよう。  配線を綺麗にまとめたくていろいろ探していたら、千石電商でぴったりなものを見つけた。 LEDリング基板 というらしい http://www.led-paradise.com/product/629?  本来はチップLEDをリング状にまとめる代物。 イレギュラーな使い道だ。   今度は小径のを買って、GX200のリングライトに仕立て上げよう。   嬉しいことにフレーム径にジャストフィット。 配線を綺麗にまとめられた。   太陽電池の接続部。逆流防止用にショットキーダイオードを入れている。 かなりスッキリ。 蛍光灯下 500ルクスでの実験。 EDLCは10Fを使用。  ちゃんと充電が行われている。 といっても、とてもとてもゆっくりとだけれど・・・。

GPSアンテナをつくる

GPSアンテナを作ってみた。 1575MHzの波長は約19cmなので、半波長で9.5cmとなる。 GHz帯とはいえ、結構長いものだなぁ。 セラミック等の誘電体がなければ、平面アンテナで真面目に半波長アンテナを作ろうとすると手のひらサイズの面積が必要になってしまう。 普通のダイポールだと指向性があるので、交差させてクロスダイポールにする。 屋外地上局のアマチュア衛星用アンテナの設計をそのまま縮小したもの。 水平パターンはややいびつ 92.2mmの真鍮の針金(Φ=0.5mmくらい)を2本用意して、42.3mmで90°に曲げる。 長さの同じ素子同士を並べて配置する。 (全長が半波長より長い素子と短い素子が交差した状態) 片方をアンテナ信号線、もう片方をGNDにつなげば完成。 実際5分くらいでつくったけれど、果たしてどうだろうか。 今回は、道具箱に眠っていた表面実装タイプのMT3339系モジュールに取り付けた。 アンテナはもともと3x1.2mm程度のとても小さいチップアンテナで、 LNAが入っているけど感度が悪かったのでお蔵入りしていた代物。 最近の携帯機器はみなアンテナに厳しい。 さて・・・ クロスダイポール版モジュールをPCでモニタしたウインドウ(左)と、QZ-Rader画面 東側に建物遮蔽があるので、そちら側の衛星はSNが悪い。 とりあえず補足できた衛星数はシミュレーションされたものとほぼおなじだった。 アンテナの角度をいろいろ振って、逆さまにしてもロストすることはなかった。 セラミックのパッチアンテナレベルにはなったかな・・・。 簡単にできてそれなりに測位するけれど、携帯性は皆無になった。 あと、近接周波数の干渉を受けやすいかもしれない。 GPSアンテナのDIY例としては、QFHアンテナもある。 ラジオゾンデなどで使われている例がある。 いつもお世話になっているQFHアンテナ計算シートのサイト https://www.jcoppens.com/ant/qfh/fotos_gps.en.php ヘリカルアンテナは加工精度の難易度が上がるので、今回はクロスダイポールにした。 GNSSとなると、複数の周波数のために調整されているセラミックパッチアンテナが有利だと思う。 セラミックパッチア

ATmega4809(megaAVR0)を試す

megaAVR 0という新しいAVRシリーズを試してみた。  小さいパッケージなのに、UARTが4本もあるのが気になったのがきっかけ。 登場すると噂の Arduino Uno Wifi rev2  にも採用されるらしい。  簡単にデータシートを眺めてみると、アーキテクチャはXmegaシリーズを簡素化し、動作電圧範囲を広げたもののようだ。  CPUの命令セットはAVRxtと新しくなっているが、Xmegaで拡張された一部の命令(DESやUSBで使われる命令)が削除されていて、基本的に今までのATmegaとほぼ同じだ。  コンパイラからは、先に登場した新しいtinyAVR0, tinyAVR1シリーズと共にAVR8Xと呼ばれて区別されている。  CPU周りを見てみると、割り込みレベルなど、今までのクラシックなATmegaで足りないなと思っていたものがかなり強化されていた。 ArduinoAPIを再実装するとしたら便利そうなペリフェラルもだいたい揃っている。 データシート P6  DMAは無いけれど、周辺機能にイベント駆動用の割り込みネットワークが張り巡らされているのがわかる。  できるだけCPUを介在させない使い方がいろいろ提案されているので、アプリケーションノートやマニュアルを読み込むことになる。 ピックアップした特徴 ・データメモリ空間(64kB)に統合されたFlashROMとEEPROM ・RAM 6kB ROM 最大48kB (メモリ空間制限のため) ・デバッグ専用の端子 UPDIを搭載 ・優先度付きの割り込み(NMIと2レベル) ・ピン単位の割り込み(かなり複雑になった) ・リセットコントローラ(ソフトウェアリセット用レジスタが実装され、リセット原因が何だったかもリセット後に読み出せるようになった) ・豊富な16ビットタイマ(4809では5基) ・16ビット リアルタイムカウンタ(RTC) ・豊富な非同期シリアル/同期シリアル(USART 4ch、SPI 1ch,TWI 1ch) ・内蔵クロックは最高20MHz(PLL)と32kHzの2種類。外部クロックは発振器と時計用水晶のみ ・ADCは10bit 16ch ・内蔵VREF電圧が5種類と多い(0.55V,1.1V,1.5V.2.5V.4.3V